Acknowledgement
This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (Ministry of Science, ICT & Future Planning) (No. NRF-2017R1A2B4002782).
References
- Brugger OE, Bornstein MM, Kuchler U, Janner SF, Chappuis V, Buser D. Implant therapy in a surgical specialty clinic: an analysis of patients, indications, surgical procedures, risk factors, and early failures. Int J Oral Maxillofac Implants. 2015; 30: 151-60. https://doi.org/10.11607/jomi.3769
- Hammerle CH, Karring T. Guided bone regeneration at oral implant sites. Periodontol 2000. 1998; 17: 151-75. https://doi.org/10.1111/j.1600-0757.1998.tb00132.x
- Buser D, Dula K, Hess D, Hirt HP, Belser UC. Localized ridge augmentation with autografts and barrier membranes. Periodontol 2000. 1999; 19: 151-63. https://doi.org/10.1111/j.1600-0757.1999.tb00153.x
- Schenk RK, Buser D, Hardwick WR, Dahlin C. Healing pattern of bone regeneration in membraneprotected defects: a histologic study in the canine mandible. Int J Oral Maxillofac Implants. 1994; 9: 13-29.
- Zitzmann NU, Scharer P, Marinello CP. Long-term results of implants treated with guided bone regeneration: a 5-year prospective study. Int J Oral Maxillofac Implants. 2001; 16: 355-66.
- Zitzmann NU, Naef R, Scharer P. Resorbable versus nonresorbable membranes in combination with BioOss for guided bone regeneration. Int J Oral Maxillofac Implants. 1997; 12: 844-52.
- Jung RE, Fenner N, Hammerle CH, Zitzmann NU. Long-term outcome of implants placed with guided bone regeneration (GBR) using resorbable and nonresorbable membranes after 12-14 years. Clin Oral Implants Res. 2013; 24: 1065-73. https://doi.org/10.1111/j.1600-0501.2012.02522.x
- Strietzel FP, Khongkhunthian P, Khattiya R, Patchanee P, Reichart PA. Healing pattern of bone defects covered by different membrane types--a histologic study in the porcine mandible. J Biomed Mater Res B Appl Biomater. 2006; 78: 35-46.
- Tal H, Kozlovsky A, Artzi Z, Nemcovsky CE, Moses O. Long-term bio-degradation of cross-linked and non-cross-linked collagen barriers in human guided bone regeneration. Clin Oral Implants Res. 2008; 19: 295-302. https://doi.org/10.1111/j.1600-0501.2007.01424.x
- Kim SH, Kim DY, Kim KH, Ku Y, Rhyu IC, Lee YM. The efficacy of a double-layer collagen membrane technique for overlaying block grafts in a rabbit calvarium model. Clin Oral Implants Res. 2009; 20: 1124-32. https://doi.org/10.1111/j.1600-0501.2009.01744.x
- Kozlovsky A, Aboodi G, Moses O, Tal H, Artzi Z, Weinreb M, Nemcovsky CE. Bio-degradation of a resorbable collagen membrane (Bio-Gide) applied in a double-layer technique in rats. Clin Oral Implants Res. 2009; 20: 1116-23. https://doi.org/10.1111/j.1600-0501.2009.01740.x
- von Arx T, Buser D. Horizontal ridge augmentation using autogenous block grafts and the guided bone regeneration technique with collagen membranes: a clinical study with 42 patients. Clin Oral Implants Res. 2006; 17: 359-66. https://doi.org/10.1111/j.1600-0501.2005.01234.x
- Park JY, Jung IH, Kim YK, Lim HC, Lee JS, Jung UW, Choi SH. Guided bone regeneration using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC)-cross-linked type-I collagen membrane with biphasic calcium phosphate at rabbit calvarial defects. Biomater Res. 2015; 19: 15. https://doi.org/10.1186/s40824-015-0038-y
- Kilkenny C, Browne WJ, Cuthill IC, Emerson M, Altman DG. Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. PLoS Biol. 2010; 8: e1000412. https://doi.org/10.1371/journal.pbio.1000412
- Yang C, Unursaikhan O, Lee JS, Jung UW, Kim CS, Choi SH. Osteoconductivity and biodegradation of synthetic bone substitutes with different tricalcium phosphate contents in rabbits. J Biomed Mater Res B Appl Biomater. 2014; 102: 80-8. https://doi.org/10.1002/jbm.b.32984
- Schliephake H, Tavassol F, Gelinsky M, Dard M, Sewing A, Pompe W. Use of a mineralized collagen membrane to enhance repair of calvarial defects in rats. Clin Oral Implants Res. 2004; 15: 112-8. https://doi.org/10.1111/j.1600-0501.2004.00992.x
- Sanz-Sanchez I, Ortiz-Vigon A, Sanz-Martin I, Figuero E, Sanz M. Effectiveness of lateral bone augmentation on the alveolar crest dimension: a systematic review and meta-analysis. J Dent Res. 2015; 94(9 Suppl): 128S-42S. https://doi.org/10.1177/0022034515594780
- Donos N, Lang NP, Karoussis IK, Bosshardt D, Tonetti M, Kostopoulos L. Effect of GBR in combination with deproteinized bovine bone mineral and/or enamel matrix proteins on the healing of critical-size defects. Clin Oral Implants Res. 2004; 15: 101-11. https://doi.org/10.1111/j.1600-0501.2004.00986.x
- Hutmacher DW, Kirsch A, Ackermann KL, Hurzeler MB. A tissue engineered cell-occlusive device for hard tissue regeneration--a preliminary report. Int J Periodontics Restorative Dent. 2001; 21: 49-59.
- Park SN, Park JC, Kim HO, Song MJ, Suh H. Characterization of porous collagen/hyaluronic acid scaffold modified by 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide cross-linking. Biomaterials. 2002; 23: 1205-12. https://doi.org/10.1016/S0142-9612(01)00235-6
- Jensen SS, Bornstein MM, Dard M, Bosshardt DD, Buser D. Comparative study of biphasic calcium phosphates with different HA/TCP ratios in mandibular bone defects. A long-term histomorphometric study in minipigs. J Biomed Mater Res B Appl Biomater. 2009; 90: 171-81.
- Lim HC, Zhang ML, Lee JS, Jung UW, Choi SH. Effect of different hydroxyapatite:β-tricalcium phosphate ratios on the osteoconductivity of biphasic calcium phosphate in the rabbit sinus model. Int J Oral Maxillofac Implants. 2015; 30: 65-72. https://doi.org/10.11607/jomi.3709
- Speer DP, Chvapil M, Eskelson CD, Ulreich J. Biological effects of residual glutaraldehyde in glutaraldehyde-tanned collagen biomaterials. J Biomed Mater Res. 1980; 14: 753-64. https://doi.org/10.1002/jbm.820140607
- Rothamel D, Schwarz F, Sculean A, Herten M, Scherbaum W, Becker J. Biocompatibility of various collagen membranes in cultures of human PDL fibroblasts and human osteoblast-like cells. Clin Oral Implants Res. 2004; 15: 443-9. https://doi.org/10.1111/j.1600-0501.2004.01039.x
- Tal H, Kozlovsky A, Artzi Z, Nemcovsky CE, Moses O. Cross-linked and non-cross-linked collagen barrier membranes disintegrate following surgical exposure to the oral environment: a histological study in the cat. Clin Oral Implants Res. 2008; 19: 760-6. https://doi.org/10.1111/j.1600-0501.2008.01546.x
- Schwarz F, Rothamel D, Herten M, Sager M, Becker J. Angiogenesis pattern of native and cross-linked collagen membranes: an immunohistochemical study in the rat. Clin Oral Implants Res. 2006; 17: 403-9. https://doi.org/10.1111/j.1600-0501.2005.01225.x
- Thoma DS, Villar CC, Cochran DL, Hammerle CH, Jung RE. Tissue integration of collagen-based matrices: an experimental study in mice. Clin Oral Implants Res. 2012; 23: 1333-9. https://doi.org/10.1111/j.1600-0501.2011.02356.x
- Hafemann B, Ghofrani K, Gattner HG, Stieve H, Pallua N. Cross-linking by 1-ethyl-3- (3-dimethylaminopropyl)-carbodiimide (EDC) of a collagen/elastin membrane meant to be used as a dermal substitute: effects on physical, biochemical and biological features in vitro. J Mater Sci Mater Med. 2001; 12: 437-46. https://doi.org/10.1023/A:1011205221972