Acknowledgement
This study was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2016R1D1A1B03930662).
References
- Boyce M, Yuan J (2006) Cellular response to endoplasmic reticulum stress: A matter of life or death. Cell Death Differ 13:363-373. https://doi.org/10.1038/sj.cdd.4401817
- Cullinan SB, Diehl JA (2004) PERK-dependent activation of Nrf2 contributes to redox homeostasis and cell survival following endoplasmic reticulum stress. J Biol Chem 279:20108-20117. https://doi.org/10.1074/jbc.M314219200
- Cullinan SB, Diehl JA (2006) Coordination of ER and oxidative stress signaling: The PERK/Nrf2 signaling pathway. Int J Biochem Cell Biol 38:317-332. https://doi.org/10.1016/j.biocel.2005.09.018
- Harding HP, Zhang Y, Bertolotti A, Zeng H, Ron D (2000) Perk is essential for translational regulation and cell survival during the unfolded protein response. Mol Cell 5:897-904. https://doi.org/10.1016/S1097-2765(00)80330-5
- Hetz C, Glimcher LH (2009) Fine-tuning of the unfolded protein response: Assembling the IRE1 α interactome. Mol Cell 35:551-556. https://doi.org/10.1016/j.molcel.2009.08.021
- Hwang IS, Bae HK, Park CK, Yang BK, Cheong HT (2012) Generation of reactive oxygen species in bovine somatic cell nuclear transfer embryos during micromanipulation procedures. Reprod Dev Biol 36:49-53.
- Kim JS, Song BS, Lee KS, Kim DH, Kim SU, Choo YK, Chang KT, Koo DB (2012) Tauroursodeoxycholic acid enhances the pre-implantation embryo development by reducing apoptosis in pigs. Reprod Dom Anim 47:791-798. https://doi.org/10.1111/j.1439-0531.2011.01969.x
- Lee HY, Bae HK, Jung BD, Lee S, Park CK, Yang BK, Cheong HT (2018) Analysis of endoplasmic reticulum (ER) stress induced during somatic cell nuclear transfer (SCNT) process in porcine SCNT embryos. Dev Reprod 22:73-83. https://doi.org/10.12717/DR.2018.22.1.073
- Lin T, Lee JE, Oqani RK, Kim SY, Cho ES, Jeong YD, Baek JJ, Jin DI (2016) Tauroursodeoxycholic acid improves pre-implantation development of porcine SCNT embryo by endoplasmic reticulum stress inhibition. Reprod Biol 16:269-278. https://doi.org/10.1016/j.repbio.2016.10.003
- Malhotra JD, Kaufman RJ (2007) The endoplasmic reticulum and the unfolded protein response. Semin Cell Dev Biol 18:716-731. https://doi.org/10.1016/j.semcdb.2007.09.003
- Morgan HD, Santos F, Green K, Dean W, Reik W (2005) Epigenetic reprogramming in mammals. Hum Mol Gen 14:R47-R58. https://doi.org/10.1093/hmg/ddi114
- Nguyen T, Nioi P, Pickett CB (2009) The Nrf2-antioxidant response element signaling pathway and its activation by oxidative stress. J Biol Chem 284:13291-13295. https://doi.org/10.1074/jbc.R900010200
- Omura T, Asari M, Yamamoto J, Oka K, Hoshina C, Maseda C, Awaya T, Tasaki Y, Shiono H, Yonezawa A, Masuda S, Matsubara K, Shimizu K (2013) Sodium tauroursodeoxycholate prevents paraquat-induced cell death by suppressing endoplasmic reticulum stress responses in human lung epithelial A549 cells. Biochem Biophy Res Comm 432:689-694. https://doi.org/10.1016/j.bbrc.2013.01.131
- Oyadomari S, Mori M (2004) Roles of CHOP/GADD153 in endoplasmic reticulum stress. Cell Death Differ 11:381-389. https://doi.org/10.1038/sj.cdd.4401373
- Park HB, Park YR, Kim MJ, Jung BD, Park CK, Cheong HT (2020) Endoplasmic reticulum (ER) stress inhibitor or antioxidant treatments during micromanipulation can inhibit both ER and oxidative stresses in porcine SCNT embryos. Dev Reprod 24:31-41. https://doi.org/10.12717/DR.2020.24.1.31
- Park YR, Park HB, Kim MJ, Jung BD, Lee S, Park CK, Cheong HT (2019) Effects of endoplasmic reticulum stress inhibitor treatment during the micromanipulation of somatic cell nuclear transfer in porcine oocytes. Dev Reprod 23:43-54. https://doi.org/10.12717/DR.2019.23.1.043
- Saito H (2013) Toxico-pharmacological perspective of the Nrf2-Keap1 defense system against oxidative stress in kidney diseases. Biochem Pharmacol 85:865-872. https://doi.org/10.1016/j.bcp.2013.01.006
- Sano R, Reed JC (2013) ER stress-induced cell death mechanisms. Biochim Biophys Acta 1833:3460-3470. https://doi.org/10.1016/j.bbamcr.2013.06.028
- Schroder M, Kaufman R (2005) ER stress and the unfolded protein response. Mutat Res 569:29-63. https://doi.org/10.1016/j.mrfmmm.2004.06.056
- Sevier CS, Cuozzo JW, Vala A, Aslund F, Kaiser CA (2001) A flavoprotein oxidase defines a new endoplasmic reticulum pathway for biosynthetic disulphide bond formation. Nat Cell Biol 3:874-882. https://doi.org/10.1038/ncb1001-874
- Song BS, Yoon SB, Sim BW, Kim YH, Cha JJ, Choi SA, Jeong KJ, Kim JS, Huh JW, Lee SR, Kim SH, Kim SU, Chang KT (2014) Valproic acid enhances early development of bovine somatic cell nuclear transfer embryos by alleviating endoplasmic reticulum stress. Reprod Fertil Dev 26:432-440. https://doi.org/10.1071/RD12336
- Xie Q, Khaoustov VI, Chung CC, Sohn J, Krishnan B, Lewis DE, Yoffe B (2002) Effect of tauroursodeoxycholic acid on endoplasmic reticulum stress-induced caspase-12 activation. Hepatology 36:592-601. https://doi.org/10.1053/jhep.2002.35441
- Yoon SB, Choi SA, Sim BW, Kim JS, Mun SE, Jeong PS, Yang HJ, Lee Y, Park YH, Song BS, Kim YH, Jeong KJ, Huh JW, Lee SR, Kim SU, Chang KT (2014) Developmental competence of bovine early embryos depends on the coupled response between oxidative and endoplasmic reticulum stress. Biol Reprod 90:1-10. https://doi.org/10.1095/biolreprod.113.115535
- Yoshida H (2007) ER stress and diseases. FEBS J 274:630-658. https://doi.org/10.1111/j.1742-4658.2007.05639.x
- Yoshida H, Matssui T, Yamamoto A, Okada T and Mori K (2001) XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell 107:881-891. https://doi.org/10.1016/S0092-8674(01)00611-0
- Zhang H, Davies KJA, Forman HJ (2015) Oxidative stress response and Nrf2 signaling in aging. Free Radic Biol Med 88:314-336. https://doi.org/10.1016/j.freeradbiomed.2015.05.036
- Zhang JY, Diao YF, Oqani RK, Han RX, Jin DI (2012) Effect of endoplasmic reticulum stress on porcine oocyte maturation and parthenogenetic embryonic development in vitro. Biol Reprod 86:1-9. https://doi.org/10.1095/biolreprod.111.093864