DOI QR코드

DOI QR Code

대형 복합재 격자구조체 개발 및 평가

Development and Evaluation of Large Scale Composite Lattice Structures

  • 투고 : 2021.09.01
  • 심사 : 2021.12.05
  • 발행 : 2021.12.31

초록

복합재 격자구조체는 요구 하중을 최소한의 무게 및 두께로 지지하는 구조체로, 고강도 탄소섬유에 에폭시 수지를 함침시켜 필라멘트 와인딩 공법으로 제작된다. 구조적으로 반드시 필요한 부분만을 적층 및 제작하므로 항공기 동체, 위성발사체 및 유도무기 등에 적용하여 경량화를 극대화 할 수 있다. 본 논문에서는 대형 원통형 및 콘형 복합재 격자구조체의 설계, 해석, 제작 및 평가까지 전 순기에 해당하는 복합재 격자구조체 개발 및 평가를 수행하였다. 실제 발사체 및 유도무기에 적용이 가능하도록 직경 2,600 mm, 길이 2,000 mm의 원통형 격자구조체와 상단 직경 1,300 mm, 하단 직경 2,500 mm, 길이 900 mm의 콘형 격자구조체를 개발하였으며, 하중시험을 통해 대형 복합재 격자구조체의 성능을 평가하였다.

The composite lattice structure is a structure that supports the required load with the minimum weight and thickness. Composite lattice structure is manufactured by the filament winding process using impregnating high-strength carbon fiber with an epoxy resin. Filament winding process can laminate and manufacture only structurally necessary parts, composite lattice structure can be applied to aircraft fuselages, satellite and launch vehicles, and guided weapons to maximize weight reduction. In this paper, the development and evaluation of the composite lattice structure corresponding to the entire process from design, analysis, fabrication, and evaluation of large-scale cylindrical and conical composites lattice structure were performed. To be applicable to actual projectiles and guided weapons, we developed a cylindrical lattice structure with a diameter of 2,600 mm and a length of 2,000 mm, and a conical lattice structure with an upper diameter of 1,300 mm, a lower diameter of 2,500 mm, and a length of 900 mm. The performance of the developed composite lattice structure was evaluated through a load test.

키워드

과제정보

본 연구는 민군협력진흥원(ICMTC)의 재원으로 복합재 격자구조체 기술개발(15-CM-MA-12)의 지원을 받아 수행한 연구과제이다.

참고문헌

  1. Vasiliev, V.V., Barynin, V.A. and A.F. Razin, "Anisogrid Composite Lattice Structures-Development and Aerospace Applications," Composite Structures, Vol. 94, No. 3, pp. 1117-1127, Feb. 2012. https://doi.org/10.1016/j.compstruct.2011.10.023
  2. Zheng, Q., Jiang, D., Huang, C., Shang, X. and Ju, S., "Analysis of failure loads and optimal design of composite lattice cylinder under axial compression," Composite Structures, Vol. 131, No. 1, pp. 885-894, Nov. 2015. https://doi.org/10.1016/j.compstruct.2015.06.047
  3. Morozov, E.V., Lopatin A.V. and Nesterov, V.A., "Finite Element Modeling and Buckling Analysis of Anisogrid Composite Lattice Cylindrical Shells," Composite Structures, Vol. 93, No. 2, pp. 308-323, Jan. 2011. https://doi.org/10.1016/j.compstruct.2010.09.014
  4. Totaro, G. and Nicola, F.D., "Recent advance on design and manufacturing of composite anisogrid structures for space launchers," Acta Astronaut, Vol. 81, pp. 570-577, 2012. https://doi.org/10.1016/j.actaastro.2012.07.012
  5. Lee, S.W., "Study on the Improvement of Fabrication Process for Cylindrical Composite Lattice Structures," Department of Mechanical Design Engineering, Hanbat National University, Daejeon, Korea, 2017.
  6. Im, J.M., Shin, K.B. and Lee, S.W., "A Study on Finite Element Modeling for Composite Lattice Structure with Hexagonal Cell," KSPE Fall Conference, Kangwon, Korea, pp. 295-296, Dec. 2018.
  7. Kim, D.G., Bae, J.C., Son J.H. and Lee, S.W., "Structure Safety Analysis of Composite Lattice Structure with Inspection Window," Journal of the Korean Society of Propulsion Engineers, Vol. 22, No. 6, pp. 94-103, 2018. https://doi.org/10.6108/KSPE.2018.22.6.094