DOI QR코드

DOI QR Code

격막 파열과 충격파 터널 시험 시간에 대한 수치 연구

Effect of a Diaphragm Opening Process on Flow Condition in Shock Tunnel

  • Kim, Seihwan (Department of Aeronautical and Mechanical Engineering, Inha Technical College)
  • 투고 : 2021.09.16
  • 심사 : 2021.11.13
  • 발행 : 2021.12.31

초록

극초음속 유동 시험에 활용되고 있는 충격파 터널 등은 원하는 시험 조건을 얻기 위해 격막의 파열 압력비를 맞추어 운용한다. 주로 금속 재질로 이루어진 격막은 정확한 압력비를 맞추기 위해 특정 형태로 가공하거나 강제 파열 장치를 사용하여 개방한다. 격막의 개방 과정은 수백 microsecond 동안 파열과 변형을 통해 이루어지는데, 동일한 압력비에서도 개방 정도와 개방 소요 시간에 따라 시험 조건이 달라질 수 있을 것으로 예상된다. 본 연구에서는 격막의 두께 및 재질 차이를 반영할 수 있는 파열모델을 적용하여 수치 해석을 수행하고 충격파의 형성과 정체 조건의 특성에 대해 살펴보았다. 격막 파열로 인해 생성된 충격파의 속도는 격막 개방 속도에 비례하였으며, 격막의 최종 개폐율 및 소요 시간에 따라 저압관 끝단에 형성되는 정체 압력과 시험 시간에 차이가 나타나는 것을 확인할 수 있었다.

High enthalpy test facilities, such as a shock tunnel, are to be operated at the specific pressure ratio according to the desired test condition. A metallic diaphragm is machined or a forced rupture device is used to open it at a specific pressure ratio. The diaphragm opening procedure takes several hundred microseconds including rupture and deformation. This process is expected to affect the test conditions. In this study, numerical simulation was performed for different materials, thicknesses, and opening ratios. And the characteristics of shock wave generation and the stagnation condition in the tube are investigated. Results show that the final opening ratio and rupturing procedure directly affect the speed of a shock wave, stagnation pressure, and test time.

키워드

과제정보

이 논문은 2020년도 인하공업전문대학 학술연구사업 지원에 의하여 연구되었음.

참고문헌

  1. Park, C., Nonequilibrium Hypersonic Aerothermodynamics, John Wiley & Sons Inc., New York, N.Y., U.S.A., 1990.
  2. Pennelegion, L. and Gouoh, P.J., "The Change in Number Due to of Helium Shock-Tunnel Tailoring Mach Driver Gas Mixtures and Nitrogen," Reports and Memoranda No. 3398, 1963.
  3. Amadio, A.R., Crofton, M.W. and Petersen, E.L., "Test-time Extension behind Reflected Shock Waves using CO2-He and C3H8-He Driver Mixtures," Shock Waves, Vol. 16, pp. 157-165, 2006. https://doi.org/10.1007/s00193-006-0058-6
  4. Aaron T.D., "Extension of LENS Shock Tunnel Test Times and Lower Mach Number Capability," 53rd AIAA Aerospace Sciences Meeting, Kissimmee, F.L., U.S.A., AIAA 2015-2017, Jan. 2015.
  5. Kim S. and Lee H.J., "Quasi 1D Nonequilibrium Analysis and Validation for Hypersonic Nozzle Design of Shock Tunnel," Journal of The Korean Society for Aeronautical and Space Sciences, Vol. 46, No. 8, pp. 652-661, 2018.
  6. Stalker, R.J. and Crane, K.C.A., "Driver Gas Contamination in a High-enthalpy Reflected Shock Tunnel," AIAA Journal, Vol. 16, pp. 277-278, 1978. https://doi.org/10.2514/3.7520
  7. Mark, H., "The Interaction of a Reflected Shock Wave with the Boundary Layer in a Shock Tube," NACA-TM-1418, 1958.
  8. Henderson, R.W., "An Analytical Method for the Design of Scored Rupture Diaphragms for Use in Shock and Gun Tunnles," Technical Memorandum TG-902, 1967.
  9. Dannenberg, R.E. and Stewart, D.A., "Techniques for Improving the Opening of the Main Diaphragm in a Larger Combustion Driver," NASA-TN-D-2735, 1965.
  10. White, D.R., "Influence of Diaphragm Opening Time on Shock-tube Flows," Journal of Fluid Mechanics, Vol. 4, pp. 585-599, 1958. https://doi.org/10.1017/S0022112058000677
  11. Drewry, J.E. and Walenta, Z.A., "Determination of Diaphragm Opening-times and Use of Diaphragm Particle Traps in a Hypersonic Shock Tube," UTIAS Technical Note No. 90, 1965.
  12. Rothkopf, E.M. and Low, W., "Diaphragm Opening Process in Shock Tubes," The Physics of Fluids, Vol. 17, No. 6, pp. 1169-1173, 1974. https://doi.org/10.1063/1.1694860
  13. Yasseen A., David G., and Malcolm, D., "In Situ Exploration of Metallic Diaphragm Rupture in a Shock Tunnel," AIAA Australian-Asia Regional Student Conference, Canberra, ACT, Australia, Nov. 2015.
  14. Simpson, C.J.S.M, Chandler, T.R.D. and Bridgman, K.B., "Effect on Shock Trajectory of the Opening Time of Diaphragms in a Shock Tube," The Physics of Fluids, Vol. 10, No. 9, pp. 1894-1896, 1967. https://doi.org/10.1063/1.1762384
  15. Matsuo, S., Mohammad, M., Nakano, S., Setoguchi, T., and Kim, H.D., "Effect of a Diaphragm Rupture Process on Flow Characteristics in a Shock Tube Using Dried Cellophane," Proceedings of the International Conference on Mechanical Engineering 2007, Dhaka, Bangladesh, Dec. 2007.
  16. Adair, D., Mukhambetiyar, A., Jaeger, M. and Malin, M., "The Influence of Finite Rupture Times on Flow Dynamics within Micro-Shock Tubes," International Journal of Computational Methods and Experimental Measurements, Vol. 7, No. 2, pp. 106-117, 2019. https://doi.org/10.2495/cmem-v7-n2-106-117
  17. Lee, H.J., Kim, S.D., Kim, S.H. and Jeung, I.-S., "Numerical Investigation on the Self-Ignition of High-pressure Hydrogen in a Tube Influenced by Burst Diaphragm Shape," Journal of The Korean Society of Combustion, Vol. 18, No. 3, pp. 31-37, 2013. https://doi.org/10.15231/JKSC.2013.18.3.031
  18. Kaneko, W., Yoshihara, J. and Ishii, K., "Effects of Opening Process of Diaphragm on Shock Strength in a Circular Tube," Transactions of the JSME, Vol. 82, No. 835, pp. 15-00541, 2016.
  19. Austin, J.M., Jacobs, P.A., Kong, M.C., Barker, P., Littleton, B.N. and Gammie, R., "The Small Shock Tunnel Facility at UQ," Department of Mechanical Engineering Report 2/1997, 1997.