DOI QR코드

DOI QR Code

Rg3-enriched Korean Red Ginseng extract inhibits blood-brain barrier disruption in an animal model of multiple sclerosis by modulating expression of NADPH oxidase 2 and 4

  • Lee, Min Jung (Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University) ;
  • Choi, Jong Hee (Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University) ;
  • Oh, Jinhee (Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University) ;
  • Lee, Young Hyun (Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University) ;
  • In, Jun-Gyo (Laboratory of Analysis R&D Headquarters, Korea Ginseng Corporation) ;
  • Chang, Byung-Joon (Department of Anatomy, College of Veterinary Medicine, Konkuk University) ;
  • Nah, Seung-Yeol (Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine and Bio/Molecular Informatics Center) ;
  • Cho, Ik-Hyun (Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University)
  • 투고 : 2019.07.09
  • 심사 : 2020.09.08
  • 발행 : 2021.05.01

초록

Background: Multiple sclerosis (MS) and its animal model, the experimental autoimmune encephalomyelitis (EAE), are primarily characterized as dysfunction of the blood-brain barrier (BBB). Ginsenoside-Rg3-enriched Korean Red Ginseng extract (Rg3-KRGE) is known to exert neuroprotective, anti-inflammatory, and anti-oxidative effects on neurological disorders. However, effects of Rg3-KRGE in EAE remain unclear. Methods: Here, we investigated whether Rg3-KRGE may improve the symptoms and pathological features of myelin oligodendroglial glycoprotein (MOG)35-55 peptide - induced chronic EAE mice through improving the integrity of the BBB. Results: Rg3-KRGE decreased EAE score and spinal demyelination. Rg3-KRGE inhibited Evan's blue dye leakage in spinal cord, suppressed increases of adhesion molecule platelet endothelial cell adhesion molecule-1, extracellular matrix proteins fibronection, and matrix metallopeptidase-9, and prevented decreases of tight junction proteins zonula occludens-1, claudin-3, and claudin-5 in spinal cord following EAE induction. Rg3-KRGE repressed increases of proinflammatory transcripts cyclooxygenase-2, inducible nitric oxide synthase, interleukin (IL)-1 beta, IL-6, and tumor necrosis factor-alpha, but enhanced expression levels of anti-inflammatory transcripts arginase-1 and IL-10 in the spinal cord following EAE induction. Rg3-KRGE inhibited the expression of oxidative stress markers (MitoSOX and 4-hydroxynonenal), the enhancement of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 2 (NOX2) and NOX4, and NADPH activity in the spinal cord of chronic EAE mice. Furthermore, apocynin, a NOX inhibitor, mimicked beneficial effects of Rg3-KRGE in chronic EAE mice. Conclusion: Our findings suggest that Rg3-KRGE might alleviate behavioral symptoms and pathological features of MS by improving BBB integrity through modulation of NOX2/4 expression.

키워드

과제정보

This study was supported by grants from the Korean Society of Ginseng (2015), Republic of Korea.

참고문헌

  1. D endrou CA, Fugger L, Friese MA. Immunopathology of multiple sclerosis. Nat Rev Immunol 2015;15:545-58. https://doi.org/10.1038/nri3871
  2. Levin MC, Jackson WC. Developing a therapeutic plan for treating MS: evidence for new treatments. J Clin Psychiatry 2014;75:e34. https://doi.org/10.4088/JCP.12100nr8c
  3. Constantinescu CS, Farooqi N, O'Brien K, Gran B. Experimental autoimmune encephalomyelitis (EAE) as a model for multiple sclerosis (MS). Br J Pharmacol 2011;164:1079-106. https://doi.org/10.1111/j.1476-5381.2011.01302.x
  4. Burrows DJ, McGown A, Jain SA, De Felice M, Ramesh TM, Sharrack B, Majid A. Animal models of multiple sclerosis: from rodents to zebrafish. Mult Scler 2019;25:306-24. https://doi.org/10.1177/1352458518805246
  5. Brambilla R. The contribution of astrocytes to the neuroinflammatory response in multiple sclerosis and experimental autoimmune encephalomyelitis. Acta Neuropathol 2019;137(5):757-83. https://doi.org/10.1007/s00401-019-01980-7
  6. Lecuyer MA, Kebir H, Prat A. Glial influences on BBB functions and molecular players in immune cell trafficking. Biochim Biophys Acta 2016;1862:472-82. https://doi.org/10.1016/j.bbadis.2015.10.004
  7. Alvarez JI, Cayrol R, Prat A. Disruption of central nervous system barriers in multiple sclerosis. Biochim Biophys Acta 2011;1812:252-64. https://doi.org/10.1016/j.bbadis.2010.06.017
  8. Sorce S, Stocker R, Seredenina T, Holmdahl R, Aguzzi A, Chio A, Depaulis A, Heitz F, Olofsson P, Olsson T, et al. NADPH oxidases as drug targets and biomarkers in neurodegenerative diseases: what is the evidence? Free Radic Biol Med 2017;112:387-96. https://doi.org/10.1016/j.freeradbiomed.2017.08.006
  9. Schreibelt G, Musters RJ, Reijerkerk A, de Groot LR, van der Pol SM, Hendrikx EM, Dopp ED, Dijkstra CD, Drukarch B, de Vries HE. Lipoic acid affects cellular migration into the central nervous system and stabilizes blood-brain barrier integrity. J Immunol 2006;177:2630-7. https://doi.org/10.4049/jimmunol.177.4.2630
  10. Obermeier B, Daneman R, Ransohoff RM. Development, maintenance and disruption of the blood-brain barrier. Nat Med 2013;19:1584-96. https://doi.org/10.1038/nm.3407
  11. van Horssen J, Witte ME, Schreibelt G, de Vries HE. Radical changes in multiple sclerosis pathogenesis. Biochim Biophys Acta 2011;1812:141-50. https://doi.org/10.1016/j.bbadis.2010.06.011
  12. Carlson NG, Rose JW. Antioxidants in multiple sclerosis: do they have a role in therapy? CNS Drugs 2006;20:433-41. https://doi.org/10.2165/00023210-200620060-00001
  13. Gilgun-Sherki Y, Melamed E, Offen D. The role of oxidative stress in the pathogenesis of multiple sclerosis: the need for effective antioxidant therapy. J Neurol 2004;251:261-8. https://doi.org/10.1007/s00415-004-0348-9
  14. Lee MJ, Jang M, Choi J, Chang BS, Kim DY, Kim SH, Kwak YS, Oh S, Lee JH, Chang BJ, et al. Korean red ginseng and ginsenoside-Rb1/-Rg1 alleviate experimental autoimmune encephalomyelitis by suppressing Th1 and Th17 cells and upregulating regulatory T cells. Mol Neurobiol 2016;53:1977-2002. https://doi.org/10.1007/s12035-015-9131-4
  15. Lee MJ, Chang BJ, Oh S, Nah SY, Cho IH. Korean Red Ginseng mitigates spinal demyelination in a model of acute multiple sclerosis by downregulating p38 mitogen-activated protein kinase and nuclear factor-kappaB signaling pathways. J Ginseng Res 2018;42:436-46. https://doi.org/10.1016/j.jgr.2017.04.013
  16. Cho I. Effects of Panax ginseng in neurodegenerative diseases. J Ginseng Res 2012;36:342-53. https://doi.org/10.5142/jgr.2012.36.4.342
  17. Lee J-I, Park KS, Cho I-H. Panax ginseng: a candidate herbal medicine for autoimmune disease. J Ginseng Res 2019;43(3):342-8. https://doi.org/10.1016/j.jgr.2018.10.002
  18. Park HJ, Hong MS, Lee JS, Leem KH, Kim CJ, Kim JW, Lim S. Effects of Aralia continentalis on hyperalgesia with peripheral inflammation. Phytother Res 2005;19:511-3. https://doi.org/10.1002/ptr.1693
  19. Kim JH. Pharmacological and medical applications of Panax ginseng and ginsenosides: a review for use in cardiovascular diseases. J Ginseng Res 2018;42:264-9. https://doi.org/10.1016/j.jgr.2017.10.004
  20. Mohanan P, Subramaniyam S, Mathiyalagan R, Yang DC. Molecular signaling of ginsenosides Rb1, Rg1, and Rg3 and their mode of actions. J Ginseng Res 2018;42:123-32. https://doi.org/10.1016/j.jgr.2017.01.008
  21. Popovich DG, Kitts DD. Generation of ginsenosides Rg3 and Rh2 from North American ginseng. Phytochemistry 2004;65:337-44. https://doi.org/10.1016/j.phytochem.2003.11.020
  22. Shin JH, Park YJ, Kim W, Kim DO, Kim BY, Lee H, Baik MY. Change of ginsenoside profiles in processed ginseng by drying, steaming, and puffing. J Microbiol Biotechnol 2019;29:222-9. https://doi.org/10.4014/jmb.1809.09056
  23. Hou J, Xue J, Wang Z, Li W. Ginsenoside Rg3 and Rh2 protect trimethyltininduced neurotoxicity via prevention on neuronal apoptosis and neuroinflammation. Phytother Res 2018;32:2531-40. https://doi.org/10.1002/ptr.6193
  24. Zhang LP, Jiang YC, Yu XF, Xu HL, Li M, Zhao XZ, Sui DY. Ginsenoside Rg3 improves cardiac function after myocardial ischemia/reperfusion via attenuating apoptosis and inflammation. Evid Based Complement Alternat Med 2016;2016:6967853.
  25. Cheng Z, Li L. Ginsenoside Rg3 ameliorates lipopolysaccharide-induced acute lung injury in mice through inactivating the nuclear factor-kappaB (NF-kappaB) signaling pathway. Int Immunopharmacol 2016;34:53-9. https://doi.org/10.1016/j.intimp.2016.02.011
  26. Kee JY, Hong SH. Ginsenoside Rg3 suppresses mast cell-mediated allergic inflammation via mitogen-activated protein kinase signaling pathway. J Ginseng Res 2019;43:282-90. https://doi.org/10.1016/j.jgr.2018.02.008
  27. Wang X, Chen L, Wang T, Jiang X, Zhang H, Li P, Lv B, Gao X. Ginsenoside Rg3 antagonizes adriamycin-induced cardiotoxicity by improving endothelial dysfunction from oxidative stress via upregulating the Nrf2-ARE pathway through the activation of akt. Phytomedicine 2015;22:875-84. https://doi.org/10.1016/j.phymed.2015.06.010
  28. Cho YS, Kim CH, Kim HN, Ha TS, Ahn HY. Ginsenoside Rg3 inhibits lipopolysaccharide-induced adhesion molecule expression in human umbilical vein endothelial cell and C57BL/6 mice. Pharmazie 2014;69:818-22.
  29. Saba E, Jeong D, Irfan M, Lee YY, Park SJ, Park CK, Rhee MH. Anti-inflammatory activity of Rg3-enriched Korean red ginseng extract in murine model of sepsis. Evid Based Complement Alternat Med 2018;2018:6874692.
  30. Kopalli SR, Cha KM, Hwang SY, Jeong MS, Kim SK. Korean Red Ginseng (Panax ginseng Meyer) with enriched Rg3 ameliorates chronic intermittent heat stress-induced testicular damage in rats via multifunctional approach. J Ginseng Res 2019;43:135-42. https://doi.org/10.1016/j.jgr.2018.06.004
  31. Park JB, Kwon SK, Nagar H, Jung SB, Jeon BH, Kim CS, Oh JH, Song HJ, Kim CS. Rg3-enriched Korean Red Ginseng improves vascular function in spontaneously hypertensive rats. J Ginseng Res 2014;38:244-50. https://doi.org/10.1016/j.jgr.2014.05.011
  32. Nagar H, Choi S, Jung SB, Jeon BH, Kim CS. Rg3-enriched Korean Red Ginseng enhances blood pressure stability in spontaneously hypertensive rats. Integr Med Res 2016;5:223-9. https://doi.org/10.1016/j.imr.2016.05.006
  33. Landis SC, Amara SG, Asadullah K, Austin CP, Blumenstein R, Bradley EW, Crystal RG, Darnell RB, Ferrante RJ, Fillit H, et al. A call for transparent reporting to optimize the predictive value of preclinical research. Nature 2012;490:187-91. https://doi.org/10.1038/nature11556
  34. Choi JH, Lee MJ, Jang M, Kim EJ, Shim I, Kim HJ, Lee S, Lee SW, Kim YO, Cho IH. An oriental medicine, hyungbangpaedok-san attenuates motor paralysis in an experimental model of multiple sclerosis by regulating the T cell response. PLoS One 2015;10:e0138592. https://doi.org/10.1371/journal.pone.0138592
  35. Lee MJ, Bing SJ, Choi J, Jang M, Lee G, Lee H, Chang BS, Jee Y, Lee SJ, Cho IH. IKKbeta-mediated inflammatory myeloid cell activation exacerbates experimental autoimmune encephalomyelitis by potentiating Th1/Th17 cell activation and compromising blood brain barrier. Mol Neurodegener 2016;11:54. https://doi.org/10.1186/s13024-016-0116-1
  36. Lee MJ, Jang M, Choi J, Lee G, Min HJ, Chung WS, Kim JI, Jee Y, Chae Y, Kim SH, et al. Bee venom acupuncture alleviates experimental autoimmune encephalomyelitis by upregulating regulatory T cells and suppressing Th1 and Th17 responses. Mol Neurobiol 2016;53:1419-45. https://doi.org/10.1007/s12035-014-9012-2
  37. Jang M, Cho IH. Sulforaphane ameliorates 3-nitropropionic acid-induced striatal toxicity by activating the Keap1-Nrf2-ARE pathway and inhibiting the MAPKs and NF-kappaB pathways. Mol Neurobiol 2016;53:2619-35. https://doi.org/10.1007/s12035-015-9230-2
  38. Cho IH, Hong J, Suh EC, Kim JH, Lee H, Lee JE, Lee S, Kim CH, Kim DW, Jo EK, et al. Role of microglial IKKbeta in kainic acid-induced hippocampal neuronal cell death. Brain 2008;131:3019-33. https://doi.org/10.1093/brain/awn230
  39. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using realtime quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 2001;25:402-8. https://doi.org/10.1006/meth.2001.1262
  40. Wojtala A, Bonora M, Malinska D, Pinton P, Duszynski J, Wieckowski MR. Methods to monitor ROS production by fluorescence microscopy and fluorometry. Methods Enzymol 2014;542:243-62. https://doi.org/10.1016/B978-0-12-416618-9.00013-3
  41. Weksler BB, Subileau EA, Perriere N, Charneau P, Holloway K, Leveque M, Tricoire-Leignel H, Nicotra A, Bourdoulous S, Turowski P, et al. Blood-brain barrier-specific properties of a human adult brain endothelial cell line. Faseb J 2005;19:1872-4. https://doi.org/10.1096/fj.04-3458fje
  42. Baeten KM, Akassoglou K. Extracellular matrix and matrix receptors in blood-brain barrier formation and stroke. Dev Neurobiol 2011;71:1018-39. https://doi.org/10.1002/dneu.20954
  43. Kato H, Kuriyama N, Duarte S, Clavien PA, Busuttil RW, Coito AJ. MMP-9 deficiency shelters endothelial PECAM-1 expression and enhances regeneration of steatotic livers after ischemia and reperfusion injury. J Hepatol 2014;60:1032-9. https://doi.org/10.1016/j.jhep.2013.12.022
  44. Esparza J, Vilardell C, Calvo J, Juan M, Vives J, Urbano-Marquez A, Yague J, Cid MC. Fibronectin upregulates gelatinase B (MMP-9) and induces coordinated expression of gelatinase A (MMP-2) and its activator MT1-MMP (MMP-14) by human T lymphocyte cell lines. A process repressed through RAS/MAP kinase signaling pathways. Blood 1999;94:2754-66. https://doi.org/10.1182/blood.V94.8.2754.420k09_2754_2766
  45. Phares TW, Kean RB, Mikheeva T, Hooper DC. Regional differences in bloodbrain barrier permeability changes and inflammation in the apathogenic clearance of virus from the central nervous system. J Immunol 2006;176:7666-75. https://doi.org/10.4049/jimmunol.176.12.7666
  46. Dunham J, van de Vis R, Bauer J, Wubben J, van Driel N, Laman JD, 't Hart BA, Kap YS. Severe oxidative stress in an acute inflammatory demyelinating model in the rhesus monkey. PLoS One 2017;12:e0188013. https://doi.org/10.1371/journal.pone.0188013
  47. Hartung HP, Schafer B, Heininger K, Toyka KV. Suppression of experimental autoimmune neuritis by the oxygen radical scavengers superoxide dismutase and catalase. Ann Neurol 1988;23:453-60. https://doi.org/10.1002/ana.410230505
  48. Glabinski A, Tawsek NS, Bartosz G. Increased generation of superoxide radicals in the blood of MS patients. Acta Neurol Scand 1993;88:174-7. https://doi.org/10.1111/j.1600-0404.1993.tb04212.x
  49. Rosenberg GA. Neurological diseases in relation to the blood-brain barrier. J Cereb Blood Flow Metab 2012;32:1139-51. https://doi.org/10.1038/jcbfm.2011.197
  50. Saunders NR, Dziegielewska KM, Mollgard K, Habgood MD. Markers for blood-brain barrier integrity: how appropriate is Evans blue in the twenty-first century and what are the alternatives? Front Neurosci 2015;9:385. https://doi.org/10.3389/fnins.2015.00385
  51. Mirshafiey A, Asghari B, Ghalamfarsa G, Jadidi-Niaragh F, Azizi G. The significance of matrix metalloproteinases in the immunopathogenesis and treatment of multiple sclerosis. Sultan Qaboos Univ Med J 2014;14:e13-25.
  52. Turner RJ, Sharp FR. Implications of MMP9 for blood brain barrier disruption and hemorrhagic transformation following ischemic stroke. Front Cell Neurosci 2016;10:56. https://doi.org/10.3389/fncel.2016.00056
  53. Mandarino LJ, Sundarraj N, Finlayson J, Hassell HR. Regulation of fibronectin and laminin synthesis by retinal capillary endothelial cells and pericytes in vitro. Exp Eye Res 1993;57:609-21. https://doi.org/10.1006/exer.1993.1166
  54. Peters JH, Sporn LA, Ginsberg MH, Wagner DD. Human endothelial cells synthesize, process, and secrete fibronectin molecules bearing an alternatively spliced type III homology (ED1). Blood 1990;75:1801-8. https://doi.org/10.1182/blood.V75.9.1801.1801
  55. Price J, Hynes RO. Astrocytes in culture synthesize and secrete a variant form of fibronectin. J Neurosci 1985;5:2205-11. https://doi.org/10.1523/JNEUROSCI.05-08-02205.1985
  56. Jones TR, Ruoslahti E, Schold SC, Bigner DD. Fibronectin and glial fibrillary acidic protein expression in normal human brain and anaplastic human gliomas. Cancer Res 1982;42:168-77.
  57. Chu F, Shi M, Zheng C, Shen D, Zhu J, Zheng X, Cui L. The roles of macrophages and microglia in multiple sclerosis and experimental autoimmune encephalomyelitis. J Neuroimmunol 2018;318:1-7. https://doi.org/10.1016/j.jneuroim.2018.02.015
  58. Pan W, Stone KP, Hsuchou H, Manda VK, Zhang Y, Kastin AJ. Cytokine signaling modulates blood-brain barrier function. Curr Pharm Des 2011;17:3729-40. https://doi.org/10.2174/138161211798220918
  59. Azodi S, Jacobson S. Cytokine therapies in neurological disease. Neurotherapeutics 2016;13:555-61. https://doi.org/10.1007/s13311-016-0455-1
  60. Lee WJ, Kim YS, Shim WS. Korean Red Ginseng extract and ginsenoside Rg3 have anti-pruritic effects on chloroquine-induced itch by inhibition of MrgprA3/TRPA1-mediated pathway. J Ginseng Res 2018;42:470-5. https://doi.org/10.1016/j.jgr.2017.05.004