지면-대기 상호작용과 장기유출모의

  • Published : 2021.06.30

Abstract

Keywords

Acknowledgement

이 성과는 2021년도 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(No.2021R1C1C1003592).

References

  1. Anayah, F.M., and J.J. Kaluarachchi (2014). "Improving the complementary methods to estimate evapotranspiration under diverse climatic and physical conditions." Hydrology and Earth System Sciences, Vol. 18, pp. 2049-2064. https://doi.org/10.5194/hess-18-2049-2014
  2. Assouline, S., Li, D., Tyler, S., Tanny, J., Cohen, S., Bou-Zeid, E., Parlange, M., and Katul, G. G. (2016). "On the variability of the Priestley-Taylor coefficient over water bodies." Water Resources Research, Vol. 52, pp. 150-163. https://doi.org/10.1002/2015WR017504
  3. Bouchet, R.J. (1963). "Evapotranspiration reelle et potentielle, signification climatique." International Association of Scientific Hydrology Publication, Vol. 62, pp. 134-142.
  4. Brutsaert, W. (2015). "A generalized complementary principle with physical constraints for land-surface evaporation." Water Resources Research, Vol. 51, pp. 8087-8093. https://doi.org/10.1002/2015WR017720
  5. Brutsaert, W., and Stricker, H. (1979). "An advection aridity approach to estimate actual regional evaporation." Water Resources Research, Vol. 15, pp. 443-450. https://doi.org/10.1029/WR015i002p00443
  6. Hobbins, M.T., Wood, A., McEvoy, D.J., Huntington, J.L., Morton, C., Anderson, M., and Hain, C. (2016). "The Evaporative Demand Drought Index: Part I-Linking drought evolution to variations in evaporative demand." Journal of Hydrometeorology, Vol. 17, pp. 1745-1761. https://doi.org/10.1175/JHM-D-15-0121.1
  7. Monteith, J.L. (1965). "Evaporation and the Environment." 19th Symposia of the Society for Experimental Biology, Vol. 19, pp. 205-234.
  8. Morton, F.I. (1983). "Operational estimates of areal evapotranspiration and their significance to the science and practice of hydrology." Journal of Hydrology, Vol. 66, pp. 1-76. https://doi.org/10.1016/0022-1694(83)90177-4
  9. Oudin, L., Hervieu, F., Michel, C., Perrin, C., Andreassian, V., Anctil, F., and Loumagne,C. (2005). "Which potential evapotranspiration input for a lumped rainfall-runoff model? - Part 2 - Towards a simple and efficient potential evapotranspiration model for rainfall-runoff modelling." Journal of Hydrology, Vol. 303, pp. 290-306. https://doi.org/10.1016/j.jhydrol.2004.08.026
  10. Penman, H.L. (1948). "Natural evaporation from open water, bare soil and grass." Proceedings of the Royal Society London A, Vol. 194, No. S. pp. 120-145.
  11. Pool, S., Vis, M. & Seibert, J. (2018) "Evaluating model performance: towards a nonparametric variant of the Kling-Gupta efficiency." Hydrological Sciences Journal, Vol. 63, pp. 1941-1953. https://doi.org/10.1080/02626667.2018.1552002
  12. Priestley, C.H., and Taylor, R.J. (1972). "On the assessment of surface heat flux and evaporation using large-scale parameters." Monthly Weather Review, Vol. 100, pp. 81-92. https://doi.org/10.1175/1520-0493(1972)100<0081:OTAOSH>2.3.CO;2
  13. Szilagyi, J., and Schepers, A. (2014). "Coupled heat and vapor transport: The thermostat effect of a freely evaporating land surface." Geophysical Research Letters, Vol. 41, pp. 435- 441. https://doi.org/10.1002/2013GL058979
  14. Szilagyi, J., Crago, R. Qualls, R. (2017). "A calibration-free formulation of the complementary relationship of evaporation for continental-scale hydrology." Journal of Geophysical Research: Atmospheres, Vol. 122, pp. 264-278. https://doi.org/10.1002/2016JD025611
  15. Zhou, S., Williams, A. P., Berg, A. M., Cook, B. I., Zhang, Y., Hagemann, S., Lorenz, R., Seneviratne, S. I., and Gentine, P. (2019). "Land-atmosphere feedbacks exacerbate concurrent soil drought and atmospheric aridity." Proceedings of the National Academy of Sciences of the United States of America, Vol. 116, pp. 18848-18853. https://doi.org/10.1073/pnas.1904955116