DOI QR코드

DOI QR Code

Finite element based stress and vibration analysis of axially functionally graded rotating beams

  • Almitani, Khalid H. (Mechanical Engineering Department, Faculty of Engineering, King Abdulaziz University) ;
  • Eltaher, M.A. (Mechanical Engineering Department, Faculty of Engineering, King Abdulaziz University) ;
  • Abdelrahman, Alaa. A. (Mechanical Design & Production Department, Faculty of Engineering, Zagazig University) ;
  • Abd-El-Mottaleb, Hanaa E. (Structural Engineering Department, Faculty of Engineering, Zagazig University)
  • 투고 : 2021.01.23
  • 심사 : 2021.04.20
  • 발행 : 2021.07.10

초록

This study presents a comprehensive numerical dynamic finite element analysis to investigate the dynamic behavior and induced stresses of axially functionally graded rotating beam, for the first time. The material properties of the rotating beam are assumed to continuously vary nonlinearly along the longitudinal direction according to the power law. Based on Timoshenko beam theory (TBT), the Hamiltonian principle is applied to derive governing equations of motion. The dynamic finite element equation of motion for axially functionally straight rotating cantilever beam is derived. Both stress and vibration responses are detected and analyzed. The proposed computational procedure is verified by comparing the obtained results with the corresponding results in the literature and good agreement is observed. Effects of the material gradation index and the rotating speed on the dynamic behavior of functionally graded rotating cantilever are investigated and analyzed. The obtained results show the significant effect of the material gradation index and the rotating speed on the dynamic behavior of axially functionally graded beams. The proposed model can be used effectively in design of wind turbine, rotation shafts and turbomachinery systems.

키워드

과제정보

This project was funded by the Deanship of Scientific Research (DSR) at King Abdulaziz University, Jeddah, under Grant no. G-86-135-1442. The authors, therefore, acknowledge with thanks DSR for technical and financial support.

참고문헌

  1. Abdelrahman, A.A. and Eltaher, M.A. (2020), "On bending and buckling responses of perforated nanobeams including surface energy for different beams theories", Eng. Comput., 1-27. https://doi.org/10.1007/s00366-020-01211-8.
  2. Abdelrahman, A.A., Abd-El-Mottaleb, H.E. and Eltaher, M.A. (2020a), "On bending analysis of perforated microbeams including the microstructure effects", Struct. Eng. Mech., 76(6), 765. http://doi.org/10.12989/sem.2020.76.6.765.
  3. Abdelrahman, A.A., Esen, I., Ozarpa, C. and Eltaher, M.A. (2021), "Dynamics of perforated nanobeams subject to moving mass using the nonlocal strain gradient theory", Appl. Math. Model., 96, 215-235. https://doi.org/10.1016/j.apm.2021.03.008.
  4. Abdelrahman, A.A., Nabawy, A.E., Abdelhaleem, A.M. and Alieldin, S.S. (2019), "Dynamic finite element analysis of flexible double wishbone suspension systems with different damping mechanisms", Eur. J. Comput. Mech., 28(6), 573-604. https://doi.org/10.13052/ejcm2642-2085.2862.
  5. Abdelrahman, A.A., Nabawy, A.E., Abdelhaleem, A.M., Alieldin, S.S. and Eltaher, M.A. (2020b), "Nonlinear dynamics of viscoelastic flexible structural systems by finite element method", Eng. Comput., 1-22 https://doi.org/10.1007/s00366-020-01141-5.
  6. Abo-bakr, H.M., Abo-bakr, R.M., Mohamed, S.A. and Eltaher, M.A. (2020), "Weight optimization of axially functionally graded microbeams under buckling and vibration behaviors", Mech. Bas. Des. Struct. Mach., 1-22. https://doi.org/10.1080/15397734.2020.1838298.
  7. Abo-bakr, H.M., Abo-bakr, R.M., Mohamed, S.A. and Eltaher, M.A. (2021a), "Multi-objective shape optimization for axially functionally graded microbeams", Compos. Struct., 258, 113370. https://doi.org/10.1016/j.compstruct.2020.113370.
  8. Abo-bakr, R.M., Abo-bakr, H.M., Mohamed, S.A. and Eltaher, M.A. (2021b), "Optimal weight for buckling of FG beam under variable axial load using Pareto optimality", Compos. Struct., 258, 113193. https://doi.org/10.1016/j.compstruct.2020.113193.
  9. Akbas, S.D. (2014), "Free vibration of axially functionally graded beams in thermal environment", Int. J Eng. Appl. Sci., 6(3), 37-51. https://doi.org/10.24107/ijeas.251224.
  10. Akbas, S.D., Bashiri, A.H., Assie, A.E. and Eltaher, M.A. (2020), "Dynamic analysis of thick beams with functionally graded porous layers and viscoelastic support", J. Vib. Control, 1077546320947302. https://doi.org/10.1177/1077546320947302.
  11. Al-Qaisia, A.A. (2008), "Dynamics of a rotating beam with flexible root and flexible hub", Struct. Eng. Mech., 30(4), 427-444. https://doi.org/10.12989/sem.2008.30.4.427.
  12. Almitani, K.H., Abdelrahman, A.A. and Eltaher, M.A. (2019), "On forced and free vibrations of cutout squared beams", Steel Compos. Struct., 32(5), 643-655. https://doi.org/10.12989/scs.2019.32.5.643.
  13. Alnujaie, A., Akbas, S.D., Eltaher, M.A. and Assie, A. (2021), "Forced vibration of a functionally graded porous beam resting on viscoelastic foundation", Geomech. Eng., 24(1), 91-103. https://doi.org/10.12989/gae.2021.24.1.091.
  14. Alshorbagy, A.E., Eltaher, M.A. and Mahmoud, F.F. (2011), "Free vibration characteristics of a functionally graded beam by finite element method", Appl. Math. Model., 35(1), 412-425. https://doi.org/10.1016/j.apm.2010.07.006.
  15. Arvin, H., Hosseini, S.M.H. and Kiani, Y. (2021), "Free vibration analysis of pre/post buckled rotating functionally graded beams subjected to uniform temperature rise", Thin Wall. Struct., 158, 107187. https://doi.org/10.1016/j.tws.2020.107187.
  16. Asiri, S.A., Akbas, S.D. and Eltaher, M.A. (2020), "Damped dynamic responses of a layered functionally graded thick beam under a pulse load", Struct. Eng. Mech., 75(6), 713-722. https://doi.org/10.12989/sem.2020.75.6.713.
  17. Azimi, M., Mirjavadi, S.S., Shafiei, N., Hamouda, A.M.S. and Davari, E. (2018), "Vibration of rotating functionally graded Timoshenko nano-beams with nonlinear thermal distribution", Mech. Adv. Mater. Struct., 25(6), 467-480. https://doi.org/10.1080/15376494.2017.1285455.
  18. Babaei, M.H., Abbasi, M. and Eslami, M.R. (2008), "Coupled thermoelasticity of functionally graded beams", J. Therm. Stress., 31(8), 680-697. https://doi.org/10.1080/01495730802193930.
  19. Bambill, D.V., Felix, D.H. and Rossi, R.E. (2010), "Vibration analysis of rotating Timoshenko beams by means of the differential quadrature method", Struct. Eng. Mech., 34(2), 231-245. http://doi.org/10.12989/sem.2010.34.2.231.
  20. Bhattacharya, S. and Das, D. (2019), "Free vibration analysis of bidirectional-functionally graded and double-tapered rotating micro-beam in thermal environment using modified couple stress theory", Compos. Struct., 215, 471-492. https://doi.org/10.1016/j.compstruct.2019.01.080.
  21. Bouzidi, I., Hadjoui, A. and Fellah, A. (2020), "Dynamic analysis of functionally graded rotor-blade system using the classical version of the finite element method", Mech. Bas. Des. Struct. Mach., 1-29. https://doi.org/10.1080/15397734.2019.1706558.
  22. Daikh, A.A., Houari, M.S.A. and Eltaher, M.A. (2021), "A novel nonlocal strain gradient Quasi-3D bending analysis of sigmoid functionally graded sandwich nanoplates", Compos. Struct., 262, 113347. https://doi.org/10.1016/j.compstruct.2020.113347.
  23. Dangi, C., Saini, S., Lal, R. and Singh, I.V. (2020), "Size dependent FEM model for Bi-directional functionally graded nano-beams", Mater. Today: Proceed., 24, 1302-1311. https://doi.org/10.1016/j.matpr.2020.04.445.
  24. Demirbas, M.D., Caliskan, U., Xu, X. and Filippi, M. (2020), "Evaluation of the bending response of compact and thin-walled FG beams with CUF", Mech. Adv. Mater. Struct., 1-10. https://doi.org/10.1080/15376494.2019.1704951.
  25. Eltaher, M.A. and Akbas, S.D. (2020), "Transient response of 2D functionally graded beam structure", Struct. Eng. Mech., 75(3), 357-367. https://doi.org/10.12989/sem.2020.75.3.357.
  26. Eltaher, M.A., Attia, M.A., Soliman, A.E. and Alshorbagy, A.E. (2018), "Analysis of crack occurs under unsteady pressure and temperature in a natural gas facility by applying FGM", Struct. Eng. Mech., 66(1), 97-111. http://doi.org/10.12989/sem.2018.66.1.097.
  27. Eltaher, M.A., Omar, F.A., Abdalla, W.S., Kabeel, A.M. and Alshorbagy, A.E. (2020a), "Mechanical analysis of cutout piezoelectric nonlocal nanobeam including surface energy effects", Struct. Eng. Mech., 76(1), 141-151. https://doi.org/10.12989/sem.2020.76.1.141.
  28. Eltaher, M.A., Omar, F.A., Abdraboh, A.M., Abdalla, W.S. and Alshorbagy, A.E. (2020b), "Mechanical behaviors of piezoelectric nonlocal nanobeam with cutouts", Smart Struct. Syst., 25(2), 219-228. https://doi.org/10.12989/sss.2020.25.2.219.
  29. Esen, I. (2019), "Dynamic response of a functionally graded Timoshenko beam on two-parameter elastic foundations due to a variable velocity moving mass", Int. J. Mech. Sci., 153, 21-35. https://doi.org/10.1016/j.ijmecsci.2019.01.033.
  30. Esen, I., Abdelrahman, A.A. and Eltaher, M.A. (2020), "Dynamics analysis of Timoshenko perforated microbeams under moving loads", Eng. Comput., 1-17. https://doi.org/10.1007/s00366-020-01212-7.
  31. Esen, I., Eltaher, M.A. and Abdelrahman, A.A. (2021b), "Vibration response of symmetric and sigmoid functionally graded beam rested on elastic foundation under moving point mass", Mech. Bas. Des. Struct. Mach., 261, 113552. https://doi.org/10.1080/15397734.2021.190425
  32. Esen, I., Ozarpa, C. and Eltaher, M.A. (2021a), "Free vibration of a cracked FG microbeam embedded in an elastic matrix and exposed to magnetic field in a thermal environment", Compos. Struct., 261, 113552. https://doi.org/10.1016/j.compstruct.2021.113552.
  33. Fang, J., Gu, J. and Wang, H. (2018b), "Size-dependent three-dimensional free vibration of rotating functionally graded microbeams based on a modified couple stress theory", Int. J. Mech. Sci., 136, 188-199. https://doi.org/10.1016/j.ijmecsci.2017.12.028.
  34. Fang, J., Zheng, S., Xiao, J. and Zhang, X. (2020), "Vibration and thermal buckling analysis of rotating nonlocal functionally graded nanobeams in thermal environment", Aerosp. Sci. Technol., 106, 106146. https://doi.org/10.1016/j.ast.2020.106146.
  35. Fang, J., Zhou, D. and Dong, Y. (2018a), "Three-dimensional vibration of rotating functionally graded beams", J. Vib. Control, 24(15), 3292-3306. https://doi.org/10.1177/1077546317703867.
  36. Faroughi, S., Rahmani, A. and Friswell, M.I. (2020), "On wave propagation in two-dimensional functionally graded porous rotating nano-beams using a general nonlocal higher-order beam model", Appl. Math. Model., 80, 169-190. https://doi.org/10.1016/j.apm.2019.11.040.
  37. Ghadiri, M. and Shafiei, N. (2016), "Vibration analysis of rotating functionally graded Timoshenko microbeam based on modified couple stress theory under different temperature distributions", Acta Astronautica, 121, 221-240. https://doi.org/10.1016/j.actaastro.2016.01.003.
  38. Hamed, M.A., Abo-bakr, R.M., Mohamed, S.A. and Eltaher, M.A. (2020), "Influence of axial load function and optimization on static stability of sandwich functionally graded beams with porous core", Eng. Comput., 36(4), 1929-1946. https://doi.org/10.1007/s00366-020-01023-w.
  39. Hamed, M.A., Sadoun, A.M. and Eltaher, M.A. (2019), "Effects of porosity models on static behavior of size dependent functionally graded beam", Struct. Eng. Mech., 71(1), 89-98. https://doi.org/10.12989/sem.2019.71.1.089.
  40. Han, H., Cao, D. and Liu, L. (2019), "A new approach for steady-state dynamic response of axially functionally graded and non-uniformed beams", Compos. Struct., 226, 111270. https://doi.org/10.1016/j.compstruct.2019.111270.
  41. Karamanli, A. (2018), "Free vibration analysis of two directional functionally graded beams using a third order shear deformation theory", Compos. Struct., 189, 127-136. https://doi.org/10.1016/j.compstruct.2018.01.060.
  42. Ke, L.L., Yang, J. and Kitipornchai, S. (2010), "An analytical study on the nonlinear vibration of functionally graded beams", Meccanica, 45(6), 743-752. https://doi.org/10.1007/s11012-009-9276-1.
  43. Korak, S. and Ranjan, G. (2014), "Closed-form solutions for axially functionally graded Timoshenko beams having uniform cross-section and fixed-fixed boundary condition", Compos.: Part B, 58, 361-370. https://doi.org/10.1016/j.compositesb.2013.10.077.
  44. Kumar, P.R., Rao, K.M. and Rao, N.M. (2017), "Flapwise vibration of rotating functionally graded beam", Mater. Today: Proc., 4(2), 3736-3744. https://doi.org/10.1016/j.matpr.2017.02.269.
  45. Lee, H.H. (2020), Finite Element Simulations with ANSYS Workbench 2020, SDC Publications.
  46. Li, C. (2017), "Nonlocal thermo-electro-mechanical coupling vibrations of axially moving piezoelectric nanobeams", Mech. Bas. Des. Struct. Mach., 45(4), 463-478. https://doi.org/10.1080/15397734.2016.1242079.
  47. Li, L., Liao, W.H., Zhang, D. and Zhang, Y. (2019), "Vibration control and analysis of a rotating flexible FGM beam with a lumped mass in temperature field", Compos. Struct., 208, 244-260. https://doi.org/10.1016/j.compstruct.2018.09.070.
  48. Li, Z., Xu, Y. and Huang, D. (2020), "Analytical solution for vibration of functionally graded beams with variable crosssections resting on Pasternak elastic foundations", Int. J. Mech. Sci., 106084. https://doi.org/10.1016/j.ijmecsci.2020.106084
  49. Maganti, N.R. and Nalluri, M.R. (2015), "Flapwise bending vibration analysis of functionally graded rotating double-tapered beams", Int. J. Mech. Mater. Eng., 10(1), 21. https://doi.org/10.1186/s40712-015-0040-0.
  50. Malekzadeh, P. and Monajjemzadeh, S.M. (2016), "Dynamic response of functionally graded beams in a thermal environment under a moving load", Mech. Adv. Mater. Struct., 23(3), 248-258. https://doi.org/10.1080/15376494.2014.949930.
  51. Melaibari, A., Abu-bakr, R.M., Mohamed, S.A. and Eltaher, M.A. (2020), "Static stability of higher order functionally graded beam under variable axial load", Alex. Eng., 59, 1661-1675. https://doi.org/10.1016/j.aej.2020.04.012.
  52. Mohammadian, M. (2021), "Nonlinear free vibration of damped and undamped bi-directional functionally graded beams using a cubic-quintic nonlinear model", Compos. Struct., 255, 112866. https://doi.org/10.1016/j.compstruct.2020.112866.
  53. Nabawy, A., Abdelrahman, A., Abdelhaleem, A. and Alieldin, S. (2019), "Finite element analysis of double wishbone vehicle suspension system", Egypt. J. Eng. Sci. Technol., 27, 12-22.
  54. Nguyen, K.V., Dao, T.T.B. and Van Cao, M. (2020), "Comparison studies of the receptance matrices of the isotropic homogeneous beam and the axially functionally graded beam carrying concentrated masses", Appl. Acoust., 160, 107160. https://doi.org/10.1016/j.apacoust.2019.107160.
  55. Panchore, V. and Ganguli, R. (2017), "Quadratic B-spline finite element method for a rotating non-uniform Rayleigh beam", Struct. Eng. Mech., 61(6), 765-773. http://doi.org/10.12989/sem.2017.61.6.765.
  56. Paul, A. and Das, D. (2018), "Free vibration behavior of a thermally post-buckled FG Timoshenko beam under large deflection using a tangent stiffness-based method", Mech. Adv. Mater. Struct., 25(12), 982-994. https://doi.org/10.1080/15376494.2017.1323140.
  57. Piovan, M.T. and Sampaio, R. (2009), "A study on the dynamics of rotating beams with functionally graded properties", J. Sound Vib., 327(1-2), 134-143. https://doi.org/10.1016/j.jsv.2009.06.015.
  58. Rajasekaran, S. and Bakhshi Khaniki, H. (2019), "Finite element static and dynamic analysis of axially functionally graded nonuniform small-scale beams based on nonlocal strain gradient theory", Mech. Adv. Mater. Struct., 26(14), 1245-1259. https://doi.org/10.1080/15376494.2018.1432797.
  59. Rao, J.S. (2011), History of Rotating Machinery Dynamics, Vol. 20, Springer Science & Business Media.
  60. Sahu, A., Pradhan, N. and Sarangi, S.K. (2020), "Static and dynamic analysis of smart functionally graded beams", Mater. Today: Proc., 24, 1618-1625. https://doi.org/10.1016/j.matpr.2020.04.483.
  61. Salighe, S. and Mohammadi, H. (2019), "Semi-active nonlinear vibration control of a functionally graded material rotating beam with uncertainties, using a frequency estimator", Compos. Struct., 210, 367-380. https://doi.org/10.1016/j.compstruct.2018.11.060.
  62. Sayyad, A.S. and Ghugal, Y.M. (2019), "Modeling and analysis of functionally graded sandwich beams: A review", Mech. Adv. Mater. Struct., 26(21), 1776-1795. https://doi.org/10.1080/15376494.2018.1447178.
  63. She, G.L. (2020), "Wave propagation of FG polymer composite nanoplates reinforced with GNPs", Steel Compos. Struct., 37, 27-35. http://doi.org/10.12989/scs.2020.37.1.027.
  64. She, G.L., Liu, H.B. and Karami, B. (2021), "Resonance analysis of composite curved microbeams reinforced with graphene nanoplatelets", Thin Wall. Struct., 160, 107407. https://doi.org/10.1016/j.tws.2020.107407.
  65. She, G.L., Ren, Y.R., Xiao, W.S. and Liu, H. (2018), "Study on thermal buckling and post-buckling behaviors of FGM tubes resting on elastic foundations", Struct. Eng. Mech., 66(6), 729-736. https://doi.org/10.12989/sem.2018.66.6.729.
  66. Simsek, M. (2019), "Some closed-form solutions for static, buckling, free and forced vibration of functionally graded (FG) nanobeams using nonlocal strain gradient theory", Compos. Struct., 224, 111041. https://doi.org/10.1016/j.compstruct.2019.111041.
  67. Sinir, S., Cevik, M. and Sinir, B.G. (2018), "Nonlinear free and forced vibration analyses of axially functionally graded Euler-Bernoulli beams with non-uniform cross-section", Compos. Part B: Eng., 148, 123-131. https://doi.org/10.1016/j.compositesb.2018.04.061.
  68. Soliman, A.E., Eltaher, M.A., Attia, M.A. and Alshorbagy, A.E. (2018), "Nonlinear transient analysis of FG pipe subjected to internal pressure and unsteady temperature in a natural gas facility", Struct. Eng. Mech., 66(1), 85-96. http://doi.org/10.12989/sem.2018.66.1.085.
  69. Storch, J. and Elishakoff, I. (2017), "Vibration of functionally graded rotating beams including the effects of nonlocal elasticity", AIAA J., 55(4), 1480-1486. https://doi.org/10.2514/1.J055038.
  70. Tian, J., Zhang, Z. and Hua, H. (2019), "Free vibration analysis of rotating functionally graded double-tapered beam including porosities", Int. J. Mech. Sci., 150, 526-538. https://doi.org/10.1016/j.ijmecsci.2018.10.056.
  71. Tufekci, E., Eroglu, U. and Aya, S.A. (2016), "Exact solution for in-plane static problems of circular beams made of functionally graded materials", Mech. Bas. Des. Struct. Mach., 44(4), 476-494. https://doi.org/10.1080/15397734.2015.1121398.
  72. Zhao, T., Ma, Y., Zhang, H. and Yang, J. (2020), "Coupled free vibration of spinning functionally graded porous double-bladed disk systems reinforced with graphene nanoplatelets", Mater., 13(24), 5610. https://doi.org/10.3390/ma13245610.
  73. Zhao, T., Yang, Y., Pan, H., Zhang, H. and Yuan, H. (2021b), "Free vibration analysis of a spinning porous nanocomposite blade reinforced with graphene nanoplatelets", J. Strain Anal. Eng. Des., 0309324720985758. https://doi.org/10.1177/0309324720985758.
  74. Zhao, T.Y., Cui, Y.S., Pan, H.G., Yuan, H.Q. and Yang, J. (2021d), "Free vibration analysis of a functionally graded graphene nanoplatelet reinforced disk-shaft assembly with whirl motion", Int. J. Mech. Sci., 197, 106335. https://doi.org/10.1016/j.ijmecsci.2021.106335.
  75. Zhao, T.Y., Jiang, L.P., Pan, H.G., Yang, J. and Kitipornchai, S. (2021f), "Coupled free vibration of a functionally graded pretwisted blade-shaft system reinforced with graphene nanoplatelets", Compos. Struct., 262, 113362. https://doi.org/10.1016/j.compstruct.2020.113362.
  76. Zhao, T.Y., Jiang, Z.Y., Zhao, Z., Xie, L.Y. and Yuan, H.Q. (2021c), "Modeling and free vibration analysis of rotating hub-blade assemblies reinforced with graphene nanoplatelets", J. Strain Anal. Eng. Des., 0309324720986904. https://doi.org/10.1177/0309324720986904.
  77. Zhao, T.Y., Liu, Z.F., Pan, H.G., Zhang, H.Y. and Yuan, H.Q. (2021a), "Vibration characteristics of functionally graded porous nanocomposite blade-disk-shaft rotor system reinforced with graphene nanoplatelets", Appl. Compos. Mater., 1-15. https://doi.org/10.1007/s10443-021-09880-4.
  78. Zhao, T.Y., Ma, Y., Zhang, H.Y., Pan, H.G. and Cai, Y. (2021e), "Free vibration analysis of a rotating graphene nanoplatelet reinforced pre-twist blade-disk assembly with a setting angle", Appl. Math. Model., 93, 578-596. https://doi.org/10.1016/j.apm.2020.12.025.