DOI QR코드

DOI QR Code

A dual-phase-lag theory of thermal wave in a porothermoelastic nanoscale material by FEM

  • Saeed, Tareq (Nonlinear Analysis and Applied Mathematics Research Group (NAAM), Mathematics Department, King Abdulaziz University) ;
  • Abbas, Ibrahim (Nonlinear Analysis and Applied Mathematics Research Group (NAAM), Mathematics Department, King Abdulaziz University)
  • Received : 2021.01.02
  • Accepted : 2021.04.06
  • Published : 2021.07.10

Abstract

In the current article, the dual phase lag theory is used to discussed the waves propagations in poroelastic nanoscale materials by the finite element method. Using the FEM to get the solutions of the complex formulation of the problem numerically. The numerical accuracy is further improved by the implementation of quadratic interpolation functions. The impacts of the thermal delay time and the porosity in a porothermal and elastic mediums are studied. The numerical outcomes for the components of displacement, the temperatures and the components of stress for the solid and liquid are represented graphically. Three theories of thermoelasticity viz. the Classical dynamical coupled (CT), Lord and Shulman (LS), and dual-phase-lag (DPL) thermoelasticity theories are considered in this problem. the present analysis may have significant application and contribution in areas utilizing the non-simples porothermoelastic with various phases in details.

Keywords

Acknowledgement

This project was funded by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah, under grant No (DF-783-130-1441). The authors, therefore, gratefully acknowledge the DSR technical and financial support.

References

  1. Abbas, I.A. (2014), "Nonlinear transient thermal stress analysis of thick-walled FGM cylinder with temperature-dependent material properties", Meccanica, 49(7), 1697-1708. https://doi.org/10.1007/s11012-014-9948-3.
  2. Abbas, I.A. and Abo-Dahab, S. (2014), "On the numerical solution of thermal shock problem for generalized magneto-thermoelasticity for an infinitely long annular cylinder with variable thermal conductivity", J. Comput. Theor. Nanosci., 11(3), 607-618. https://doi.org/10.1016/j.apm.2011.02.028.
  3. Abbas, I.A. and Alzahrani, F.S. (2016), "Analytical solution of a two-dimensional thermoelastic problem subjected to laser pulse", Steel Compos. Struct., 21(4), 791-803. https://doi.org/10.12989/scs.2016.21.4.791.
  4. Abbas, I.A. and Kumar, R. (2014), "Deformation due to thermal source in micropolar generalized thermoelastic half-space by finite element method", J. Comput. Theor. Nanosci., 11(1), 185-190. https://doi.org/10.1166/jctn.2014.3335.
  5. Abbas, I.A. and Kumar, R. (2016), "2D deformation in initially stressed thermoelastic half-space with voids", Steel Compos. Struct., 20(5), 1103-1117. https://doi.org/10.12989/scs.2016.20.5.1103.
  6. Abbas, I.A. and Othman, M.I. (2012), "Generalized thermoelastic interaction in a fiber-reinforced anisotropic half-space under hydrostatic initial stress", J. Vib. Control, 18(2), 175-182. https://doi.org/10.1177/1077546311402529.
  7. Abbas, I.A. and Youssef, H.M. (2012), "A nonlinear generalized thermoelasticity model of temperature-dependent materials using finite element method", Int. J. Thermophys., 33(7), 1302-1313. https://doi.org/10.1007/s10765-012-1272-3.
  8. Abbas, I.A. and Zenkour, A.M. (2013), "LS model on electro-magneto-thermoelastic response of an infinite functionally graded cylinder", Compos. Struct., 96 89-96. https://doi.org/10.1016/j.compstruct.2012.08.046.
  9. Abbas, I.A. and Zenkour, A.M. (2014), "Dual-phase-lag model on thermoelastic interactions in a semi-infinite medium subjected to a ramp-type heating", J. Comput. Theor. Nanos., 11(3), 642-645. https://doi.org/10.1166/jctn.2014.3407.
  10. Abd-Elaziz, E.M., Marin, M. and Othman, M.I. (2019), "On the effect of Thomson and initial stress in a thermo-porous elastic solid under GN electromagnetic theory", Symmetry, 11(3), 413. https://doi.org/10.3390/sym11030413.
  11. Alzahrani, F.S. and Abbas, I.A. (2016), "The effect of magnetic field on a thermoelastic fiber-reinforced material under GN-III theory", Steel Compos. Struct., 22(2), 369-386. http://doi.org/10.12989/scs.2016.22.2.369.
  12. Alzahrani, F.S. and Abbas, I.A. (2020), "Fractional order GL model on thermoelastic interaction in porous media due to pulse heat flux", Geomech. Eng., 23, 217-225. http://doi.org/10.12989/gae.2020.23.3.217.
  13. Biot, M.A. (1956), "Thermoelasticity and irreversible thermodynamics", J. Appl. Phys., 27(3), 240-253. https://doi.org/10.1063/1.1722351.
  14. El-Naggar, A., Kishka, Z., Abd-Alla, A., Abbas, I., Abo-Dahab, S. and Elsagheer, M. (2013), "On the initial stress, magnetic field, voids and rotation effects on plane waves in generalized thermoelasticity", J. Comput. Theor. Nanosci., 10(6), 1408-1417. https://doi.org/10.1166/jctn.2013.2862.
  15. Ezzat, M. and Ezzat, S. (2016), "Fractional thermoelasticity applications for porous asphaltic materials", Petrol. Sci., 13(3), 550-560. https://doi.org/10.1007/s12182-016-0094-5.
  16. Green, A. and Naghdi, P. (1992), "On undamped heat waves in an elastic solid", J. Therm. Stress., 15(2), 253-264. https://doi.org/10.1080/01495739208946136.
  17. Green, A. and Naghdi, P. (1993), "Thermoelasticity without energy dissipation", J. Elastic., 31(3), 189-208. https://doi.org/10.1007/BF00044969.
  18. Green, A.E. and Naghdi, P.M. (1991), "A re-examination of the basic postulates of thermomechanics", Proc. Roy. Soc. London Ser. A: Math. Phys. Sci., 432(1885), 171-194. https://doi.org/10.1098/rspa.1991.0012.
  19. Hobiny, A.D. and Abbas, I.A. (2020), "Fractional order thermoelastic wave assessment in a two-dimension medium with voids", Geomech. Eng., 21, 85-93. http://doi.org/10.12989/gae.2020.21.1.085.
  20. Itu, C., Ochsner, A., Vlase, S. and Marin, M.I. (2019), "Improved rigidity of composite circular plates through radial ribs", Proc. Inst. Mech. Eng., Part L: J. Mater.: Des. Appl., 233(8), 1585-1593. https://doi.org/10.1177/1464420718768049.
  21. Kaur, I., Lata, P. and Singh, K. (2020), "Reflection and refraction of plane wave in piezo-thermoelastic diffusive half spaces with three phase lag memory dependent derivative and two-temperature", Wave. Rand. Complex Media, 1-34. https://doi.org/10.1080/17455030.2020.1856451.
  22. Kaur, I., Lata, P. and Singh, K. (2020), "Reflection of plane harmonic wave in rotating media with fractional order heat transfer", Adv. Mater. Res., 9(4), 289. http://doi.org/10.12989/amr.2020.9.4.289.
  23. Kumar, R. and Abbas, I.A. (2013), "Deformation due to thermal source in micropolar thermoelastic media with thermal and conductive temperatures", J. Comput. Theor. Nanosci., 10(9), 2241-2247. https://doi.org/10.1166/jctn.2013.3193.
  24. Lata, P. and Kaur, H. (2020), "Time Harmonic interactions in the axisymmetric behaviour of transversely isotropic thermoelastic solid using New M-CST", Coupl. Syst. Mech., 9(6), 521. http://doi.org/10.12989/csm.2020.9.6.521.
  25. Lata, P. and Kaur, I. (2019), "Thermomechanical interactions in transversely isotropic magneto thermoelastic solid with two temperatures and without energy dissipation", Steel Compos. Struct., 32(6), 779-793. http://doi.org/10.12989/scs.2019.32.6.779.
  26. Lata, P. and Singh, S. (2020), "Plane wave propagation in a nonlocal magneto-thermoelastic solid with two temperature and Hall current", Wave. Rand. Complex Media, 1-27. https://doi.org/10.1080/17455030.2020.1838667.
  27. Lata, P. and Singh, S. (2020), "Time harmonic interactions in non local thermoelastic solid with two temperatures", Struct. Eng. Mech., 74, 341-350. http://doi.org/10.12989/sem.2020.74.3.341.
  28. Lata, P. and Singh, S. (2021), "Stoneley wave propagation in nonlocal isotropic magneto-thermoelastic solid with multi-dual-phase lag heat transfer", Steel Compos. Struct., 38(2), 141. http://doi.org/10.12989/scs.2021.38.2.141.
  29. Lord, H.W. and Shulman, Y. (1967), "A generalized dynamical theory of thermoelasticity", J. Mech. Phys. Solid., 15(5), 299-309. https://doi.org/10.1016/0022-5096(67)90024-5.
  30. Marin, M. (2010), "Lagrange identity method for microstretch thermoelastic materials", J. Math. Anal. Appl., 363(1), 275-286. https://doi.org/10.1016/j.jmaa.2009.08.045.
  31. Marin, M., Vlase, S., Ellahi, R. and Bhatti, M.M. (2019), "On the partition of energies for the backward in time problem of thermoelastic materials with a dipolar structure", Symmetry, 11(7), 863. https://doi.org/10.3390/sym11070863.
  32. McTigue, D. (1986), "Thermoelastic response of fluid-saturated porous rock", J. Geophys. Res.: Solid Earth, 91(B9), 9533-9542. https://doi.org/10.1029/JB091iB09p09533.
  33. Mohamed, R., Abbas, I.A. and Abo-Dahab, S. (2009), "Finite element analysis of hydromagnetic flow and heat transfer of a heat generation fluid over a surface embedded in a non-Darcian porous medium in the presence of chemical reaction", Commun. Nonlin. Sci. Numer. Simul., 14(4), 1385-1395. https://doi.org/10.1016/j.cnsns.2008.04.006.
  34. Saeed, T., Abbas, I. and Marin, M. (2020), "A GL model on thermo-elastic interaction in a poroelastic material using finite element method", Symmetry, 12(3), 488. https://doi.org/10.3390/sym12030488.
  35. Singh, B. (2007), "Wave propagation in a generalized thermoelastic material with voids", Appl. Math. Comput., 189(1), 698-709. https://doi.org/10.1016/j.amc.2006.11.123.
  36. Singh, B. (2011), "On propagation of plane waves in generalized porothermoelasticity", Bul. Seismol. Soc. Am., 101(2), 756-762. https://doi.org/10.1785/0120100091.
  37. Singh, B. (2013), "Reflection of plane waves from a free surface of a porothermoelastic solid half-space", J. Porous Media, 16(10). https://doi.org/10.1615/JPorMedia.v16.i10.60.
  38. Singh, B. (2018), "On Rayleigh wave in a generalized porothermoelastic solid half-space", Res. J. Eng. Technol., 9(2), 179-188. https://doi.org/10.5958/2321-581X.2018.00025.9.
  39. Tzou, D.Y. (1995), "Experimental support for the lagging behavior in heat propagation", J. Thermophys. Heat Transf., 9(4), 686-693. https://doi.org/10.2514/3.725.
  40. Tzou, D.Y. (1995), "Unified field approach for heat conduction from macro- to micro-scales", J. Heat Transf., 117(1), 8-16. https://doi.org/10.1115/1.2822329.
  41. Vinyas, M., Harursampath, D. and Kattimani, S. (2020), "Thermal response analysis of multi-layered magneto-electro-thermoelastic plates using higher order shear deformation theory", Struct. Eng. Mech., 73, 667-684. http://doi.org/10.12989/sem.2020.73.6.667.
  42. Vlase, S., Marin, M., Ochsner, A. and Scutaru, M. (2019), "Motion equation for a flexible one-dimensional element used in the dynamical analysis of a multibody system", Continuum Mech. Thermodyn., 31(3), 715-724. https://doi.org/10.1007/s00161-018-0722-y.
  43. Youssef, H. (2007), "Theory of generalized porothermoelasticity", Int. J. Rock Mech. Min. Sci., 44(2), 222-227. https://doi.org/10.1016/j.ijrmms.2006.07.001.