과제정보
The financial support from the Indonesian Ministry of Research and Technology (RISTEK-BRIN) through the World Class Research (WCR) program is gratefully acknowledged (NKB-384/UN2.RST/HKP.05.00/2021).
참고문헌
- Batoz, J.L. and Dhatt, G. (1990), Modelisation des Structures par Element Finis, Volume 2: Poutres et Plaques, Hermes, Paris, France.
- Batoz, J.L. and Katili, I. (1992), "On a simple triangular Reissner Mindlin plate element based on incompatible modes and discrete constraints", Int. J. Numer. Meth. Eng., 3, 1603-1632. https://doi.org/10.1002/nme.1620350805.
- Batoz, J.L. and Lardeur, P. (1989), "A discrete shear triangular nine dof element for the analysis of thick to very thin plates", Int. J. Numer. Meth. Eng., 28, 533-560. https://doi.org/10.1002/nme.1620280305.
- Batoz, J.L., Bathe, K.J. and Ho, L.W. (1980), "A study of three-node triangular plate bending elements", Int. J. Numer. Meth. Eng., 15, 1771-1812. https://doi.org/10.1002/nme.1620151205.
- Bergan, P.G. (1980), "Finite elements based on energy orthogonal functions", Int. J. Numer. Meth. Eng., 15. 1541-1555. https://doi.org/10.1002/nme.1620151009.
- Dinh, T.C., Duc, T.T., Trung, K.N. and Van, H.N. (2017b), "A node-based mitc3 element for analyses of laminated composite plates using the higher-order shear deformation theory", Proceedings of the International Conference on Advances in Computational Mechanics, 409-429.
- Dinh, T.C., Duy, Q.N. and Xuan, H.N. (2017a), "Improvement on MITC3 plate finite element using edge-based strain smoothing enhancement for plate analysis", Acta Mechanica, 228, 2141-2163. https://doi.org/10.1007/s00707-017-1818-3.
- Hughes, T.J.R. and Taylor, R.L. (1982), "The linear triangle bending elements", The Mathematics of Finite Element and Application IV, MAFELAP, Academic Press, London.
- Katili, A.M., Maknun, I.J. and Katili, I. (2019b), "Theoretical equivalence and numerical performance of T3γs and MITC3 plate finite elements", Struct. Eng. Mech., 69, 527-536. https://doi.org/10.12989/sem.2019.69.5.527.
- Katili, I. (1993), "A new discrete Kirchhoff-Mindlin element based on Mindlin-Reissner plate theory and assumed shear strain fields- part I: An extended DKT element for thick plate bending analysis", Int. J. Numer. Meth. Eng., 36, 1859-1883. https://doi.org/10.1002/nme.1620361107.
- Katili, I., Aristio, R. and Setyanto, S.B. (2020), "Isogeometric collocation method to solve the strong form equation of UI-RM Plate Theory", Struct. Eng. Mech., 76, 435-449. https://doi.org/10.12989/sem.2020.76.4.435.
- Katili, I., Maknun, I.J., Batoz, J.L. and Katili, A.M. (2018), "Asymptotic equivalence of DKMT and MITC3 elements for Thick Compos. Plates, 206, 363-379. https://doi.org/10.1016/j.compstruct.2018.08.017
- Katili, I., Maknun, I.J., Batoz, J.L. and Katili, A.M. (2019a), "A comparative formulation of T3γs, DST, DKMT and MITC3+ triangular plate elements with new numerical results based on s-norm tests", Eur. J. Mech./A Solid., 78, 103826. https://doi.org/10.1016/j.euromechsol.2019.103826
- Kirchhoff, G. (1950), "Uber das Gleichgewicht und die Bewegung einer elastischen Scheibe", J. Reine Angew. Math., 40, 51-58.
- Lardeur, P. and Batoz, J.L. (1989), "Composite plate analysis using a new discrete shear triangular plate bending element", Int. J. Numer. Meth. Eng., 27, 343-360. https://doi.org/10.1002/nme.1620270209.
- Lee, P.S. and Bathe, K.J. (2004), "Development of MITC isotropic triangular shell finite elements", Comput. Struct., 82, 945-962. https://doi.org/10.1016/j.compstruc.2004.02.004.
- Lee, P.S., Noh, H.C. and Bathe, K.J. (2007), "Insight into 3-node triangular shell finite elements: the effect of element isotropy and mesh pattern", Comput. Struct., 85, 404-418. https://doi.org/10.1016/j.compstruc.2006.10.006.
- Lee, Y., Jeon, H.M., Lee, P.S. and Bathe, K.J. (2015), "The modal behavior of the MITC3+ triangular shell element", Comput. Struct., 153, 148-164. https://doi.org/10.1016/j.compstruc.2015.02.033.
- Lee, Y., Lee, P.S. and Bathe, K.J. (2014), "The MITC3+ shell element and its performance", Comput. Struct., 138, 12-23. https://doi.org/10.1016/j.compstruc.2014.02.005.
- Lee, Y., Yoon, K. and Lee, P.S. (2012), "Improving the MITC3 shell finite element by using the Hellinger-Reissner principle", Comput. Struct., 110, 93-106. https://doi.org/10.1016/j.compstruc.2012.07.004.
- Liew, K.M. and Han, J.B. (1997), "Bending analysis of simply supported shear deformable skew plates", J. Eng. Mech., 123, 214-221. https://doi.org/10.1061/(ASCE)0733-9399(1997)123:3(214).
- MacNeal, R.H. (1982), "Derivation of element stiffness matrices by assumed strain distributions", Nucl. Eng. Des., 70, 3-12. https://doi.org/10.1016/0029-5493(82)90262-X.
- Maknun, I.J., Katili, I., Ibrahimbegovic, A. and Katili, A.M. (2020), "A new triangular shell element for composites accounting for shear deformation", Comput. Struct., 243, 112214. https://doi.org/10.1016/j.compstruct.2020.112214.
- Mindlin, R.D. (1951), "Influence of rotation inertia and shear on flexural motion of isotropic elastic plates", J. Appl. Mech., 18, 31-38. https://doi.org/10.1115/1.4010217.
- Morley, L.S.D. (1963), Skew Plates and Structures, Pergamon Press, New York, USA.
- Nguyen, T.K., Nguyen, V.H. and Dinh, T.C. (2018), "Cell- and node-based smoothing mitc3-finite elements for static and free vibration analysis of laminated composite and functionally graded plates", Int. J. Comput. Meth., 15(03), 1850123. https://doi.org/10.1142/S0219876218501232.
- Razzaque, A. (1973), "Program for triangular bending elements with derivative smoothing", Int. J. Numer. Meth. Eng., 6, 333-345. https://doi.org/10.1002/nme.1620060305.
- Reissner, E. (1945), "The effect of transverse shear deformation on the bending of elastic plates", J. Appl. Mech. Eng., ASME, 12, A69-A77. https://doi.org/10.1115/1.4009435.
- Sengupta, D. (1995), "Performance study of a simple finite element in the analysis of skew rhombic plates", Comput. Struct., 54, 1173-82. https://doi.org/10.1016/0045-7949(94)00405-R.