DOI QR코드

DOI QR Code

A constant strain triangle element oriented multi-material topology optimization with a moved and regularized Heaviside function

  • Nguyen, Xuan Q. (Department of Architectural Engineering, Sejong University) ;
  • Banh, Thanh T. (Department of Architectural Engineering, Sejong University) ;
  • Lee, Dongkyu (Department of Architectural Engineering, Sejong University)
  • Received : 2020.01.19
  • Accepted : 2021.06.11
  • Published : 2021.07.10

Abstract

This study presents an optimal topology material distribution method in the framework of minimum compliance with a constraint on the total amount of multi-material using constant strain triangle (CST) elements and Moved and Regularized Heaviside Function (MRHF) filters. The sensitivity formulations for objective function and sensitivity for structures are derived in terms of multiphase design variables through triangle elements. Mathematical formulations of topology optimization problem solving the minimum compliance by using multiple materials are an alternating active-phase algorithm with a Gauss-Seidel version as an optimization model of optimality criteria. Moreover, MRHF that has the role of a filter in multiple materials is considered to produce obvious material distributions and improve the convergence of objective values. Some optimal topology results under the influence of rmin and filter are also investigated and verify the CST element-based multi-material topology optimization is appropriate to the use of MRHF and produces reasonable optimal results.

Keywords

Acknowledgement

This research was supported by a grant (NRF-2020R1A4A2002855) from NRF (National Research Foundation of Korea) funded by MEST (Ministry of Education and Science Technology) of Korean government.

References

  1. Andreassen, E., Clausen A., Schevenels M., Lazarov B.S. and Sigmund, O. (2011), "Efficient topology optimization in MATLAB using 88 lines of code", Struct. Multidisc. Optim., 43, 1-16. https://doi.org/10.1007/s00158-010-0594-7.
  2. Bai, J. and Zuo, W. (2020), "Hollow structural design in topology optimization via moving morphable component method", Struct. Multidisc. Optim., 61, 187-205. https://doi.org/10.1007/s00158-019-02353-0.
  3. Banh, T.T. and Lee, D.K. (2018), "Multi-material topology optimization design for continuum structures with crack patterns", Compos. Struct., 186, 193-209. https://doi.org/10.1016/j.compstruct.2017.11.088.
  4. Banh, T.T. and Lee, D.K. (2019), "Topology optimization of multi-directional variable thickness thin plate with multiple materials", Struct. Multidisc. Optim., 59, 1503-1520. https://doi.org/10.1007/s00158-018-2143-8.
  5. Bendsoe, M.P. (1995), Optimization of Structural Topology, Shape and Material, Springer, Berlin, Heidelberg, New York.
  6. Bendsoe, M.P. and Kikuchi, N. (1988), "Generating optimal topologies in structural design using a homogenization method", Comput. Meth. Appl. Math., 71(2), 197-224. https://doi.org/10.1016/0045-7825(88)90086-2.
  7. Bendsoe, M.P. and Sigmund, O. (2004), Topology Optimization: Theory, Methods, and Applications, Springer, Berlin Heidelberg, New York, NY, USA.
  8. Blasques, J.P. and Stolpe, M. (2012), "Multi-material topology optimization of laminated composite beam cross sections", Mater. Des., 94(11), 3278-3289. https://doi.org/10.1016/j.compstruct.2012.05.002.
  9. Bourdin, B. (2001), "Filters in topology optimization", Int. J. Numer. Meth. Eng., 50, 2143-2158. https://doi.org/10.1002/nme.116.
  10. Chen, Y., Zhou, S. and Li, Q. (2009), "Computational design for multifunctional microstructural composites", Int. J. Mod. Phys. B, 23, 1345-1351. https://doi.org/10.1142/S0217979209060920.
  11. Chen, Y., Zhou, S. and Li, Q. (2010), "Multi objective topology optimization for finite periodic structures", Comput. Struct., 88, 806-811. https://doi.org/10.1016/j.compstruc.2009.10.003.
  12. Doan, Q.H. and Lee, D.K. (2017), "Optimum topology design of multi-material structures with non-spurious buckling constraints", Adv. Eng. Softw., 114, 110-120. https://doi.org/10.1016/j.advengsoft.2017.06.002.
  13. Fahmy, M.A. (2020), "Boundary element algorithm for nonlinear modeling and simulation of three temperature anisotropic generalized micropolar piezothermoelasticity with memory-dependent derivative", Int. J. Appl. Mech., 12, 2050027. https://doi.org/10.1142/S1758825120500271.
  14. Fahmy, M.A. (2021a), "A new BEM for fractional nonlinear generalized porothermoelastic wave propagation problems", CMC-Comput., Mater. Continua, 68, 59-76. https://doi.org/10.32604/cmc.2021.015115.
  15. Fahmy, M.A. (2021b), "A novel BEM for modeling and simulation of 3T nonlinear generalized anisotropic micropolar-thermoelasticity theory with memory dependent derivative", CMES-Comput. Model. Eng. Sci., 126, 175-199. https://doi.org/10.32604/cmes.2021.012218.
  16. Fahmy, M.A. (2021c), "A new boundary element algorithm for modeling and simulation of nonlinear thermal stresses in micropolar FGA composites with temperature-dependent properties", Adv. Model. Simul. Eng. Sci., 8, 1-23. https://doi.org/10.1186/s40323-021-00193-6.
  17. Fahmy, M.A. (2021d), "A new boundary element algorithm for a general solution of nonlinear space-time fractional dual-phase-lag bio-heat transfer problems during electromagnetic radiation", Case Stud. Therm. Eng., 25, 100918. https://doi.org/10.1016/j.csite.2021.100918.
  18. Guest, J.K. and Prevost, J.H. (2007), "Design of maximum permeability material structures", Comput. Meth. Appl. Mech. Eng., 196, 1006-1017. https://doi.org/10.1016/j.cma.2006.08.006.
  19. Guest, J.K., Prevost, J.H. and Belytschko, T. (2004), "Achieving minimum length scale in topology optimization using nodal design variables and projection functions", Int. J. Number. Meth. Eng., 61, 238-254. https://doi.org/10.1002/nme.1064.
  20. Hu, S.B., Chen, L.P., Zhang, Y.Q., Yang, J. and Wang, S.T. (2009), "A crossing sensitivity filter for structural topology optimization with chamfering, rounding, and checker board free patterns", Struct. Multidisc. Optim., 37, 529-540. https://doi.org/10.1007/s00158-008-0246-3.
  21. Lee, D.K., Nguyen, H.C. and Shin, S. (2015), "Generation of OC and MMA topology optimizer by using accelerating design variables", Struct. Eng. Mech., 55(5), 901-911. https://doi.org/10.12989/sem.2015.55.5.901.
  22. Lee, D.K., Shin, S., Park, H. and Park, S. (2014), "Topological material distribution evaluation for steel plate reinforcement by using CCARAT optimizer", Struct. Eng. Mech., 51(5), 793-808. https://doi.org/10.12989/sem.2014.51.5.793.
  23. Liu, Q., Chan, R. and Huang, X. (2016), "Concurrent topology optimization of macrostructures and material microstructures for natural frequency", Mater. Des., 106, 380-390. https://doi.org/10.1016/j.matdes.2016.05.115.
  24. Lu, Y.Y., Belytschko, T. and Gu, L. (1994), "A new implementation of the element free Galerkin method", Comput. Meth. Appl. Mech. Eng., 113, 397-414. https://doi.org/10.1016/0045-7825(94)90056-6.
  25. Lund, E. (2009), "Buckling topology optimization of laminated multi-material composite shell structures", Compos. Struct., 91, 158-167. https://doi.org/10.1016/j.compstruct.2009.04.046.
  26. Ryszard, K. (2009), "Topology optimization of the structure using multi-material inclusions", Struct. Eng. Mech., 33(3), 285-306. https://doi.org/10.12989/sem.2009.33.3.285.
  27. Ryszard, K. and Bartosz, R. (2014a), "Application of topology optimization to bridge girder design", Struct. Eng. Mech., 51(1), 39-66. https://doi.org/10.12989/sem.2014.51.1.067.
  28. Ryszard, K. and Bartosz, R. (2014b), "The use of topology optimization in the design of truss and frame bridge girders", Struct. Eng. Mech., 51(1), 67-88. https://doi.org/10.12989/sem.2014.51.1.067.
  29. Sigmund, O. (2001), "A 99 lines topology optimization code written in Matlab", Struct. Multidisc. Optim., 21, 120-127. https://doi.org/10.1007/s001580050176.
  30. Sigmund, O. (2007), "Morphology-based black and white filters for topology optimization", Struct. Multidisc. Optim., 33, 401-424. https://doi.org/10.1007/s00158-006-0087-x.
  31. Sigmund, O. (1994), "Design of material structures using topology optimization", Ph.D. Thesis, Department of Solid Mechanics, Technical University of Denmark.
  32. Sigmund, O. (1997), "On the design of compliant mechanisms using topology optimization", Mech. Struct. Mach., 25, 495-526. https://doi.org/10.1080/08905459708945415.
  33. Sigmund, O. and Jensen, J.S (2003), "Systematic design of photonic band-gap materials and structure by topology optimization", Philos. Tran. Roy. Soc. A, 361, 1001-1019. https://doi.org/10.1098/rsta.2003.1177.
  34. Sigmund, O. and Petersson, J. (1998), "Numerical instabilities in topology optimization: a survey on procedures dealing with checkerboards, mesh-dependencies and local minima", Struct. Optim., 16, 68-75. https://doi.org/10.1007/BF01214002.
  35. Sigmund, O. and Torquato, S. (1997), "Design of materials with extreme thermal expansion using a three-phase topology optimization method", J. Mech. Phys. Solid., 45, 1037-1067. https://doi.org/10.1016/S0022-5096(96)00114-7
  36. Tavakoli, R. and Mohseni, S.M. (2014), "Alternating active-phase algorithm for multi-material topology optimization problems: a 115-line Matlab implementation", Struct. Multidisc. Optim., 49, 621-642. https://doi.org/10.1007/s00158-013-0999-1
  37. Xia, Q. and Wang, M.Y. (2008), "Topology optimization of thermoelastic structures using level set method", Comput. Mech., 42, 837-857. https://doi.org/10.1007/s00466-008-0287-x.
  38. Xu, S., Cai, Y. and Cheng, G. (2010), "Volume preserving nonlinear density filter based on Heaviside functions", Struct. Multidisc. Optim., 41, 495-505. https://doi.org/10.1007/s00158-009-0452-7.
  39. Zhou, S. and Wang, M. (2006), "Multi-material structural topology optimization with a generalized Cahn-Hilliard model of multiphase transition", Struct. Multidisc. Optim., 33, 89-111. https://doi.org/10.1007/s00158-006-0035-9.
  40. Zhou, W.D. and Chen, J.S. (2018), "3D Printing of Carbon Fiber Reinforced Plastics and their Applications", Mater. Sci. Forum, 913, 558-563. https://doi.org/10.4028/www.scientific.net/MSF.913.558.
  41. Zuo, W.J. and Saitou, K. (2017), "Multi-material topology optimization using ordered SIMP interpolation", Struct. Multidisc. Optim., 55, 477-491. https://doi.org/10.1007/s00158-016-1513-3.