DOI QR코드

DOI QR Code

Optimization and mathematical modelling of multi-layer beam based on sinusoidal theory

  • Wang, Bin (Civil Engineering and Transportation Engineering, Yellow River Conservancy Technical Institute) ;
  • Yan, Gongxing (Scientific Research and Technical Service Office, Chongqing Vocational Institute of Engineering) ;
  • Allahyari, Seyedmahmoodreza (Department of Mechanical Engineering, Dariun Branch, Islamic Azad University)
  • Received : 2020.01.19
  • Accepted : 2021.06.11
  • Published : 2021.07.10

Abstract

The optimization conditions of the embedded nanocomposite multi-layer beams reinforced by ZnO nanoparticles are evaluated using a sinusoidal shear deformation theory. The adaptive improved harmony search (AIHS) optimization method is used as optimizer. Based on numerical method of differential quadrature, the buckling load is obtained. The optimum designs for nanocomposite reinforced sinusoidal multi-layer beams are evaluated using proposed AIHS based on the axial forces, applied voltage, volume fraction of ZnO nanoparticles, boundary conditions and geometrical parameters. The results demonstrated that optimum design conditions for a nanocomposite multi-layer beam under 50 GPa buckling constraint force are obtained as the length and thickness of multi-layer beam are 3.3326 m and 29.1125 cm. The applied voltage is the effective variables on the buckling of nanocomposite multi-layer beams.

Keywords

References

  1. Al-Furjan, M.S.H., Farrokhian, A., Keshtegar, B., Kolahchi, R. and Trung, N.T. (2020), "Higher order nonlocal viscoelastic strain gradient theory for dynamic buckling analysis of carbon nanocones", Aerosp. Sci. Technol., 107, 106259. https://doi.org/10.1016/j.ast.2020.106259.
  2. Al-Furjan, M.S.H., Farrokhian, A., Mahmoud, S.R. and Kolahchi, R. (2021a), "Dynamic deflection and contact force histories of graphene platelets reinforced conical shell integrated with magnetostrictive layers subjected to low-velocity impact", Thin Wall. Struct., 163, 107706. https://doi.org/10.1016/j.tws.2021.107706.
  3. Al-Furjan, M.S.H., Farrokhian, A., Keshtegar, B., Kolahchi, R. and Trung, N.T. (2021b), "Dynamic stability control of viscoelastic nanocomposite piezoelectric sandwich beams resting on Kerr foundation based on exponential piezoelasticity theory", Eur. J. Mech./A Solid., 86, 104169. https://doi.org/10.1016/j.euromechsol.2020.104169.
  4. Akin, A. and Saka, M.P. (2015), "Harmony search algorithm based optimum detailed design of reinforced concrete plane frames subject to ACI 318-05 provisions", Comput. Struct., 147, 79-95. https://doi.org/10.1016/j.compstruc.2014.10.003.
  5. Alesadi, A., Galehdari, M. and Shojaee, S. (2017), "Free vibration and buckling analysis of cross-ply laminated composite plates using Carrera's unified formulation based on Isogeometric approach", Comput. Struct., 183, 38-47. https://doi.org/10.1016/j.compstruc.2017.01.013.
  6. Azadi, R. and Rostamiyan, Y. (2015), "Experimental and analytical study of buckling strength of new quaternary hybrid nanocomposite using Taguchi method for optimization", Constr. Build. Mater., 88, 212-224. https://doi.org/10.1016/j.conbuildmat.2015.04.018.
  7. Benahmed, A., Fahsi, B., Benzair, A., Zidour, M., Bourada, F. and Tounsi, A. (2019), "Critical buckling of functionally graded nanoscale multi-layer beam with porosities using nonlocal higher-order shear deformation", Struct. Eng. Mech., 69(4), 457-466. http://doi.org/10.12989/sem.2019.69.4.457.
  8. Bilouei, B.S., Kolahchi, R. and Bidgoli, M.R. (2016), "Buckling of concrete columns retrofitted with Nano-Fiber Reinforced Polymer (NFRP)", Comput. Concrete, 18(5), 1053-1063. http://doi.org/10.12989/cac.2016.18.6.1053.
  9. Cheng, H.C., Hsieh, K.Y. and Chen, K.M. (2011), "Thermal- mechanical optimization of a novel nanocomposite-film typed flip chip technology", Microelectron. Reliab., 51(4), 826-836. https://doi.org/10.1016/j.microrel.2010.11.007.
  10. El-Abd, M. (2013), "An improved global-best harmony search algorithm", Appl. Math. Comput., 222, 94-106. https://doi.org/10.1016/j.amc.2013.07.020.
  11. Gao, L., Xiao, M., Shao, X., Jiang, P., Nie, L. and Qiu, H. (2012), "Analysis of gene expression programming for approximation in engineering design", Struct. Multidisc. Optim., 46(3), 399-413. https://doi.org/10.1007/s00158-012-0767-7.
  12. Hajmohammad, M.H., Farrokhian, A. and Kolahchi, R. (2021), "Dynamic analysis in beam element of wave-piercing Catamarans undergoing slamming load based on mathematical modelling", Ocean Eng., 234, 109269. https://doi.org/10.1016/j.oceaneng.2021.109269.
  13. Horny, N., Kanake, Y., Chirtoc, M. and Tighzert, L. (2016), "Optimization of thermal and mechanical properties of bio-polymer based nanocomposites", Polym. Degrad. Stab., 127, 105-112. https://doi.org/10.1016/j.polymdegradstab.2016.01.006.
  14. Kamarian, S., Shakeri, M. and Yas, M. (2016), "Natural frequency analysis and optimal design of CNT/fiber/polymer hybrid composites plates using mori-tanaka approach, GDQ technique, and firefly algorithm", Polym. Compos., 39(5), 1433-1446. https://doi.org/10.1002/pc.24083.
  15. Katariya, P.V. and Panda, S.K. (2016), "Thermal buckling and vibration analysis of laminated composite curved shell panel", Aircraft Eng. Aerosp. Technol., 88(1), 97-107. https://doi.org/10.1108/AEAT-11-2013-0202
  16. Katariya, P.V., Panda, S.K., Hirwani, C.K., Mehar, K. and Thakare, O. (2017), "Enhancement of thermal buckling strength of laminated sandwich composite panel structure embedded with shape memory alloy fibre", Smart Struct. Syst., 20(5), 595-605. http://doi.org/10.12989/sss.2017.20.5.595.
  17. Katariya, P.V., Panda, S.K. and Mahapatra, T.R. (2017), "Nonlinear thermal buckling behaviour of laminated composite panel structure including the stretching effect and higher-order finite element", Adv. Mater. Res., 6(4), 349-361. http://doi.org/10.12989/amr.2017.6.4.349.
  18. Khelifa, Z., Hadji, L., Daouadji, T.H. and Bourada, M. (2018), "Buckling response with stretching effect of carbon nanotube-reinforced composite multi-layer beams resting on elastic foundation", Struct. Eng. Mech., 67(2), 125-130. https://doi.org/10.12989/sem.2018.67.2.125.
  19. Kolahchi, R., Bidgoli, M.R., Beygipoor, G. and Fakhar, M.H. (2015), "A nonlocal nonlinear analysis for buckling in embedded FG-SWCNT-reinforced microplates subjected to magnetic field", J. Mech. Sci. Technol., 29(9), 3669-3677. https://doi.org/10.1007/s12206-015-0811-9.
  20. Kolahchi, R., Hosseini, H. and Esmailpour, M. (2016a), "Differential cubature and quadrature-Bolotin methods for dynamic stability of embedded piezoelectric nanoplates based on visco-nonlocal-piezoelasticity theories", Compos. Struct., 157, 174-186. https://doi.org/10.1016/j.compstruct.2016.08.032.
  21. Kolahchi, R., Safari, M. and Esmailpour, M. (2016b), "Dynamic stability analysis of temperature-dependent functionally graded CNT-reinforced visco-plates resting on orthotropic elastomeric medium", Compos. Struct., 150, 255-265. https://doi.org/10.1016/j.compstruct.2016.05.023.
  22. Kolahchi, R., Keshtegar, B. and Fakhar, M.H. (2020a), "Optimization of dynamic buckling for sandwich nanocomposite plates with sensor and actuator layer based on sinusoidal-visco-piezoelasticity theories using Grey Wolf algorithm", J. Sandw. Struct. Mater., 22(1), 3-27. https://doi.org/10.1177/1099636217731071.
  23. Kolahchi, R., Zhu, S.P., Keshtegar, B. and Trung, N.T. (2020b), "Dynamic buckling optimization of laminated aircraft conical shells with hybrid nanocomposite martial", Aerosp. Sci. Technol., 98, 105656. https://doi.org/10.1016/j.ast.2019.105656.
  24. Kolahchi, R., Keshtegar, B. and Trung, N.T. (2021a), "Optimization of dynamic properties for laminated multiphase nanocomposite sandwich conical shell in thermal and magnetic conditions", Int. J. Sandw. Struct., 10996362211020388. https://doi.org/10.1177/10996362211020388.
  25. Kolahchi, R. and Kolahdouzan, F. (2021b), "A numerical method for magneto-hygro-thermal dynamic stability analysis of defective quadrilateral graphene sheets using higher order nonlocal strain gradient theory with different movable boundary conditions", Appl. Math. Model., 91, 458-475. https://doi.org/10.1016/j.apm.2020.09.060.
  26. Lalwani, P., Das, S., Banka, H. and Kumar, C. (2016), "CRHS: clustering and routing in wireless sensor networks using harmony search algorithm", Neur. Comput. Appl., 30, 639-659. https://doi.org/10.1007/s00521-016-2662-4.
  27. Mansour, G., Tsongas, K. and Tzetzis, D. (2016), "Modal testing of nanocomposite materials through an optimization algorithm", Measure., 91, 31-38. https://doi.org/10.1016/j.measurement.2016.05.032.
  28. Mehar, K., Panda, S.K., Devarajan, Y. and Choubey, G. (2019), "Numerical buckling analysis of graded CNT-reinforced composite sandwich shell structure under thermal loading", Compos. Struct., 216, 406-414. https://doi.org/10.1016/j.compstruct.2019.03.002.
  29. Mehri, M., Asadi, H. and Wang, Q. (2016), "Buckling and vibration analysis of a pressurized CNT reinforced functionally graded truncated conical shell under an axial compression using HDQ method", Comput. Meth. Appl. Mech. Eng., 303, 75-100. https://doi.org/10.1016/j.cma.2016.01.017.
  30. Meng, D., Li, Y., Zhu, S.P., Hu, Z., Xie, T. and Fan, Z. (2020), "Collaborative maritime design using sequential optimisation and reliability assessment", Proceedings of the Institution of Civil Engineers-Maritime Engineering, Thomas Telford Ltd.
  31. Meng, D., Li, Y., Zhu, S.P., Lv, G., Correia, J. and de Jesus, A. (2019), "An enhanced reliability index method and its application in reliability-based collaborative design and optimization", Math. Prob. Eng., 91, 458-475. https://doi.org/10.1016/j.apm.2020.09.060.
  32. Mosharrafian, F. and Kolahchi, R. (2016), "Nanotechnology, smartness and orthotropic nonhomogeneous elastic medium effects on buckling of piezoelectric pipes", Struct. Eng. Mech., 58(5), 931-947. http://doi.org/10.12989/sem.2016.58.5.931.
  33. Motezaker, M., Kolahchi, R., Rajak, D.K. and Mahmoud, S.R. (2021), "Influences of fiber reinforced polymer layer on the dynamic deflection of concrete pipes containing nanoparticle subjected to earthquake load", Polym. Compos., https://doi.org/10.1002/pc.26118.
  34. Nejati, M., Eslampanah, A. and Najafizadeh, M. (2016), "Buckling and vibration analysis of functionally graded carbon nanotube-reinforced multi-layer beam under axial load", Int. J. Appl. Mech., 8(01), 1650008. https://doi.org/10.1142/S1758825116500083
  35. Omran, M.G. and Mahdavi, M. (2008), "Global-best harmony search", Appl. Math. Comput., 198(2), 643-656. https://doi.org/10.1016/j.amc.2007.09.004.
  36. Panda, S.K. and Katariya, P.V. (2015), "Stability and free vibration behaviour of laminated composite panels under thermo-mechanical loading", Int. J. Appl. Comput. Math., 1(3), 475-490. https://doi.org/10.1007/s40819-015-0035-9.
  37. Rouhi, M. and Rais-Rohani, M. (2013), "Modeling and probabilistic design optimization of a nanofiber-enhanced composite cylinder for buckling", Compos. Struct., 95, 346-353. https://doi.org/10.1016/j.compstruct.2012.05.035.
  38. Tan, P. and Tong, L. (2001), "Micro-electromechanics models for piezoelectric-fiber-reinforced composite materials", Compos. Sci. Technol., 61(5), 759-769. https://doi.org/10.1016/S0266-3538(01)00014-8.
  39. Thai, H.T. and Vo, T.P. (2012), "A nonlocal sinusoidal shear deformation multi-layer beam theory with application to bending, buckling, and vibration of nanomulti-layer beams", Int. J. Eng. Sci., 54, 58-66. https://doi.org/10.1016/S0266-3538(01)00014-8.
  40. Vodenitcharova, T. and Zhang, L. (2006), "Bending and local buckling of a nanocomposite multi-layer beam reinforced by a single-walled carbon nanotube", Int. J. Solid. Struct., 43(10), 3006-3024. https://doi.org/10.1016/j.ijsolstr.2005.05.014.
  41. Wang, Y., Guo, Z. and Wang, Y. (2017), "Enhanced harmony search with dual strategies and adaptive parameters", Soft Comput., 21(15), 4431-4445. https://doi.org/10.1007/s00500-017-2563-1.
  42. Xiao, M., Zhang, J. and Gao, L. (2020), "A system active learning Kriging method for system reliability-based design optimization with a multiple response model", Reliab. Eng. Syst. Saf., 199, 106935. https://doi.org/10.1016/j.ress.2020.106935.
  43. Xiao, M., Zhang, J., Gao, L., Lee, S. and Eshghi, A.T. (2019), "An efficient Kriging-based subset simulation method for hybrid reliability analysis under random and interval variables with small failure probability", Struct. Multidisc. Optim., 59(6), 2077-2092. https://doi.org/10.1007/s00158-018-2176-z.
  44. Yang, J., Wu, H. and Kitipornchai, S. (2017), "Buckling and postbuckling of functionally graded multilayer graphene platelet-reinforced composite multi-layer beams", Compos. Struct., 161, 111-118. https://doi.org/10.1016/j.compstruct.2016.11.048.
  45. Yas, M. and Samadi, N. (2012), "Free vibrations and buckling analysis of carbon nanotube-reinforced composite Timoshenko multi-layer beams on elastic foundation", Int. J. Press. Ves. Pip., 98, 119-128. https://doi.org/10.1016/j.ijpvp.2012.07.012.
  46. Zamanian, M., Kolahchi, R. and Bidgoli, M.R. (2017), "Agglomeration effects on the buckling behaviour of embedded concrete columns reinforced with SiO2 nano-particles", Wind Struct., 24(1), 43-57. https://doi.org/10.12989/was.2017.24.1.043.
  47. Zhang, J., Xiao, M. and Gao, L. (2019a), "A new method for reliability analysis of structures with mixed random and convex variables", Appl. Math. Model., 70, 206-220. https://doi.org/10.1016/j.apm.2019.01.025.
  48. Zhang, J., Xiao, M., Gao, L. and Chu, S. (2019b), "A combined projection-outline-based active learning Kriging and adaptive importance sampling method for hybrid reliability analysis with small failure probabilities", Comput. Meth. Appl. Mech. Eng., 344, 13-33. https://doi.org/10.1016/j.cma.2018.10.003.
  49. Zhang, J., Xiao, M., Gao, L. and Chu, S. (2019c), "Probability and interval hybrid reliability analysis based on adaptive local approximation of projection outlines using support vector machine", Comput. Meth. Appl. Mech. Eng., 34(11), 991-1009. https://doi.org/10.1111/mice.12480.
  50. Zhang, L., Song, Z. and Liew, K. (2016), "Computation of aerothermoelastic properties and active flutter control of CNT reinforced functionally graded composite panels in supersonic airflow", Comput. Meth. Appl. Mech. Eng., 300, 427-441. https://doi.org/10.1016/j.cma.2015.11.029.
  51. Zhang, Y., Gao, L. and Xiao, M. (2020), "Maximizing natural frequencies of inhomogeneous cellular structures by Krigingassisted multiscale topology optimization", Comput. Struct., 230, 106197. https://doi.org/10.1016/j.compstruc.2019.106197.
  52. Zheng, L., Diao, R. and Shen, Q. (2015), "Self-adjusting harmony search-based feature selection", Soft Comput., 19(6), 1567- 1579. https://doi.org/10.1007/s00500-014-1307-8.