참고문헌
- Azizi, M.W., Keblouti, O., Boulanouar, L. and Yallese, M.A. (2020), "Design optimization in hard turning of E19 alloy steel by analysing surface roughness, tool vibration and productivity", Struct. Eng. Mech., 73(5), 501-513. https://doi.org/10.12989/sem.2020.73.5.501.
- Bejan, A. (1994), Entropy Generation through Heat and Fluid Flow, John Wiley & Sons.
- Bensouici, M. and Bensouici, F.Z. (2017), "Entropy generation and optimization of laminar forced convection Air Cooling in a horizontal channel containing heated sources", J. Appl. Fluid Mech., 10(3), 819-831. https://doi.org/10.18869/acadpub.jafm.73.240.26847.
- Bensouici, M. and Bessaih, R. (2010), "Mixed convection in a vertical channel with discrete heat sources using a porous matrix", Numer. Heat Transf. A, 58, 581-604. https://doi.org/10.1080/10407782.2010.516684.
- Bessaih, R. and Kadja, M. (2000), "Turbulent natural convection cooling of electronic components mounted on a vertical channel", Appl. Therm. Eng., 20(2), 141-154. https://doi.org/10.1016/S1359-4311(99)00010-1.
- Bhowmik, H., Tso, C.P., Tou, K.W. and Tan, F.L. (2005), "Convection heat transfer from discrete heat sources in a liquid cooled rectangular channel", Appl. Therm. Eng., 25, 2532-2542. https://doi.org/10.1016/j.applthermaleng.2004.11.022.
- Boutina, L. and Bessaih, R. (2011), "Numerical simulation of mixed convection air-cooling of electronic components mounted in an inclined channel", Appl. Therm. Eng., 31, 2052- 2062. https://doi.org/10.1016/j.applthermaleng.2011.03.021.
- Bouziane, A., Boulanouar, L., Azizi, M.W. and Keblouti, O. (2018), "Analysis of cutting forces and roughness during hard turning of bearing steel", Struct. Eng. Mech., 66(3), 285-294. https://doi.org/10.12989/sem.2018.66.3.285.
- Box, G.E.P. and Wilson, K. (1951), "On the experimental attainment of optimum conditions", J. Roy. Stat. Soc., 13, 1-45. https://doi.org/10.1111/j.1467-9884.1963.tb01587.x
- Cengel, Y.A. (2008), Introduction to Thermodynamics and Heat Transfer, Second Edition: Property Tables and Charts (SI units), The McGraw-Hill Companies.
- Choi, C.Y. and Ortega, A. (1993), "Mixed convection in an inclined channel with a discrete heat source", J. Heat Mass Transf., 36, 3119-3134. https://doi.org/10.1016/0017-9310(93)90040-D.
- Damavandi, M.D., Forouzanmehr, M. and Safikhani, H. (2017), "Modeling and Pareto based multi-objective optimization of wavy fin-and-elliptical tube heat exchangers using CFD and NSGA-II algorithm", Appl. Therm. Eng., 111, 325-339. https://doi.org/10.1016/j.applthermaleng.2016.09.120.
- Derringer, G. and Suich, R. (1980), "Simultaneous optimization of several response variables", J. Qual. Eng., 12, 214-219. https://doi.org/10.1080/00224065.
- Esfe, M.H., Arani, A.A.A., Niroumand, A.H., Yan, W.M. and Karimipour, A. (2015), "Mixed convection heat transfer from surface-mounted block heat sources in a horizontal channel with nanofluids", Int. J. Heat Mass Transf., 89, 783-791. https://doi.org/10.1016/j.ijheatmasstransfer.2015.05.100.
- Guimares, P.M. and Menon, G.J. (2008), "Combined free and forced convection in an inclined channel with discrete heat sources", Int. Comm. Heat Mass Transf., 35, 1267-1274. https://doi.org/10.1016/j.icheatmasstransfer.2008.08.006.
- Hamouche, A. and Bessaih, R. (2009), "Mixed convection air cooling of protruding heat sources mounted in a horizontal channel", Int. Comm. Heat Mass Transf., 36, 841-849. https://doi.org/10.1016/j.icheatmasstransfer.2009.04.009.
- Han, H., Yu, R., Li, B. and Zhang, Y. (2019), "Multi-objective optimization of corrugated tube inserted with multi-channel twisted tape using RSM and NSGA-II", Appl. Therm. Eng., 159, 113-731. https://doi.org/10.1016/j.applthermaleng.2019.113731
- Harrington, J.E. (1965), "The desirability function", Indus. Qual. Control, 21, 494-498.
- Hotta, T.K. and Venkateshan, S.P. (2012), "Natural and mixed convection heat transfer cooling of discrete heat sources placed near the bottom on a PCB", Proc. World Acad. Sci. Eng. Technol., 6(8), 1446-1453. https://doi.org/doi/10.5281/zenodo.1073038.
- Hotta, T.K., Balaji, C. and Venkateshan, S.P. (2015), "Experiment driven ANN-GA based technique for optimal distribution of discrete heat sources under mixed convection", Exp. Heat Transf., 28(3), 298-315. https://doi.org/10.1080/08916152.2013.871867.
- Icoz, T. and Jaluria, Y. (2004), "Design of cooling systems for electronic equipment using both experimental and numerical inputs", J. Elect. Pack., 126, 465-471. https://doi.org/10.1115/1.1827262.
- Icoz, T., Verma, N. and Jaluria, Y. (2006), "Design of air and liquid cooling systems for electronic components using concurrent simulation and experiment", A. J. Heat Transfer., 128,.466-478. https://doi.org/10.1115/1.2353284.
- Karvinkoppa, M.V. and Hotta, T.K. (2017), "Numerical investigation of natural and mixed convection heat transfer on optimal distribution of discrete heat sources mounted on a substrate", IOP Conf. Ser.: Mater. Sci. Eng., 263(6), 062066. https://doi.org/10.1088/1757-899X/263/6/062066.
- Keblouti, O., Boulanouar, L., Azizi, M.W. and Bouziane, A. (2019), "Multi response optimization of surface roughness in hard turning with coated carbide tool based on cutting parameters and tool vibration", Struct. Eng. Mech., 70(4), 395-405. https://doi.org/10.12989/sem.2019.70.4.395.
- Laouche, N., Korichi, A., Popa, C.V. and Polidori, G. (2017), "Laminar aiding and opposing mixed convection in laminar aiding and opposing mixed convection in a vertical channel with an asymmetric discrete heating at one wall", Therm. Sci. Int. J., l21, 2503-2515. https://doi.org/10.2298/TSCI160105149L.
- Mathew, V.K. and Hotta, T.K. (2018), "Numerical investigation on optimal arrangement of IC chips mounted on a SMPS board cooled under mixed convection", Therm. Sci. Eng. Prog., 7, 221-229. https://doi.org/doi/10.1016/j. tsep.2018.06.010.
- Mathew, V.K. and Hotta, T.K. (2020), "Investigation of substrate board orientation effect on the optimal distribution of IC chips under forced convection", Exp. Heat Transf., 1-22. https://doi.org/10.1080/08916152.2020.1793827.
- Mohapatra, T., Sahoo, S.S. and Padhi, B.N. (2019), "Analysis, prediction and multi-response optimization of heat transfer characteristics of a three fluid heat exchanger using Response Surface Methodology and Desirability Function Approach", Appl. Therm. Eng., 151, 536-555. https://doi.org/10.1016/j.applthermaleng.2019.02.001.
- Montgomery, D.C. (2001), Design and Analysis of Experiments, John Wiley & Sons, New York.
- Myers R.H. and Montgomery, D.C. (1995), Response Surface Methodology: Process and Product Optimization Using Designed Experiments, John Wiley and Sons, Inc., New York.
- Myers, R.H. and Montgomery, D.C. (2002), Response Surface Methodology: Process and Product.
- Pordanjani, A.H., Vahedi, S.M., Rikhtegar, F. and Wongwises, S. (2019), "Optimization and sensitivity analysis of magneto-hydrodynamic natural convection nanofluid flow inside a square enclosure using response surface methodology", J. Therm. Anal. Calorim., 135, 1031-1045. https://doi.org/10.1007/s10973-018-7652-6.
- Sekrani, G., Poncet S. and Proulx, P. (2015), "Mixed Conjugated heat transfer and entropy generation of Al2O3-water nanofluid flows over a heated wall-mounted obstacle", J. Therm. Anal. Calorim., 135(2), 963-979. https://doi.org/10.1007/s10973-018-7349-x.