References
- Abbas, I.A. and Youssef, H.M. (2013), "Two-temperature generalized thermoelasticity under ramp-type heating by finite element method", Meccanica, 48(2), 331-339. https://doi.org/10.1007/s11012-012-9604-8.
- Abbas, I.A. and Zenkour, A.M. (2014), "Two-temperature generalized thermoelastic interaction in an infinite fiber-reinforced anisotropic plate containing a circular cavity with two relaxation times", J. Comput. Theor. Nanosci., 11(1), 1-7. https://doi.org/10.1166/jctn.2014.3309.
- Arif, S.M., Biwi, M. and Jahangir, A. (2018), "Solution of algebraic lyapunov equation on positive-definite hermitian matrices by using extended Hamiltonian algorithm", Comput. Mater. Continua, 54(1), 181-195.
- Asghari, M., Ahmadian, M.T. Kahrobaiyan, M.H. and Rahaeifard, M. (2010), "On the size-dependent behavior of functionally graded micro-beams", Mater. Des., 31(5), 2324-2329. https://doi.org/10.1016/j.matdes.2009.12.006.
- Asghari, M., Rahaeifard, M., Kahrobaiyan, M.H. and Ahmadian M.T. (2011), "The modified couple stress functionally graded Timoshenko beam formulation", Mater. Des., 32(3), 1435-1443. https://doi.org/10.1016/j.matdes.2010.08.046.
- Bhatti, M.M., Elelamy, A.F., Sait, M.S. and Ellahi, R. (2020a), "Hydrodynamics interactions of metachronal waves on particulate-liquid motion through a ciliated annulus: Application of bio-engineering in blood clotting and endoscopy", Symmetry, 12(4), 532. https://doi.org/10.3390/sym12040532.
- Bhatti, M.M., Khalique, C.M., Beg, T.A., Beg, O.A. and Kadir, A. (2020b), "Numerical study of slip and radiative effects on magnetic Fe 3 O 4-water-based nanofluid flow from a nonlinear stretching sheet in porous media with Soret and Dufour diffusion", Mod. Phys. Lett. B, 34(2), 2050026. https://doi.org/10.1142/S0217984920500268.
- Bhatti, M.M., Marin, M., Zeeshan, A., Ellahi, R. and Abdelsalam, S.I. (2020c), "Swimming of motile gyrotactic microorganisms and nanoparticles in blood flow through anisotropically tapered arteries", Front. Phys., 8, 95. https://doi.org/10.3389/fphy.2020.00095.
- Biot, M.A. (1965), "Theory of stress-strain relations in an isotropic viscoelasticity, and relaxation phenomena", J. Appl. Phys., 25(11), 1385-1391. https://doi.org/10.1063/1.1721573.
- Chen, S. and Wang, T. (2001), "Strain gradient theory with couple stress for crystalline solids", Eur. J. Mech. A-Solid., 20(5), 739-756. https://doi.org/10.1016/S0997-7538(01)01168-8.
- Chen, W. and Li, X. (2013), "Size-dependent free vibration analysis of composite laminated Timoshenko beam based on new modified couple stress theory", Arch. Appl. Mech., 83(3), 431-444. https://doi.org/10.1007/s00419-012-0689-2.
- Chen, W. and Li, X. (2014), "A new modified couple stress theory for anisotropic elasticity and microscale laminated Kirchhoff plate model", Arch. Appl. Mech., 84(3), 323-341. https://doi.org/10.1007/s00419-013-0802-1.
- Chen, W. and Si, J. (2013), "A model of composite laminated beam based on the global-local theory and new modified couple-stress theory", Compos. Struct., 103, 99-107. https://doi.org/10.1016/j.compstruct.2013.03.021.
- Chen, W., Xu, M. and Li, L. (2012), "A model of composite laminated Reddy plate based on new modified couple stress theory", Compos. Struct., 94(7), 2143-2156. https://doi.org/10.1016/j.compstruct.2012.02.009.
- Cosserat, E. and Cosserat, F. (1909), Theory of Deformable Bodies, Hermann et Fils, Paris, France.
- Eringen, A.C. (1999), "Theory of micropolar elasticity", Microcontinuum Field Theories, Springer, New York, U.S.A., 101-248.
- Green A.E. and Naghdi, P.M. (1993), "Thermoelasticity without energy dissipation", J. Elasticity, 31(3), 189-208. https://doi.org/10.1007/BF00044969.
- Guo, J., Chen, J. and Pan, E. (2016), "Size-dependent behavior of functionally graded anisotropic composite plates" Int. J. Eng. Sci., 106, 110-124. https://doi.org/10.1016/j.ijengsci.2016.05.008.
- Ke, L. and Wang, Y. (2011), "Size effect on dynamic stability of functionally graded microbeams based on a modified couple stress theory", Compos. Struct., 93(2), 342-350. https://doi.org/10.1016/j.compstruct.2010.09.008.
- Koiter, W.T. (1964), "Couple stresses in the theory of elasticity, I and II", Philos. T. R. Soc. B, 67, 17-29.
- Kumar, R., Devi, S. and Sharma, V. (2017), "Effect of Hall current and rotation in modified couple stress generalized thermoelastic half space due to ramp type heating", J. Solid Mech., 9(3), 527-542.
- Kumar, R., Sharma, N. and Lata, P. (2016), "Thermomechanical interactions due to inclined load in transversely isotropic magnatothermoelastic medium with and without energy dissipation with two temperatures and rotation", J. Solid Mech., 8(4), 840-858.
- Lata, P. (2018a), "Effect of energy dissipation on plane waves in sandwiched layered thermoelastic medium", Steel Compos. Struct., 27(4), 439-451. https://doi.org/10.12989/scs.2018.27.4.439.
- Lata, P. (2018b), "Reflection and refraction of plane waves in layered nonlocal elastic and anisotropic thermoelastic medium", Struct. Eng. Mech., 66(1), 113-124. https://doi.org/10.12989/sem.2018.66.1.113.
- Lata, P. and Kaur, H. (2019a), "Axisymmetric deformation in transversely isotropic thermoelastic medium using new modified couple stress theory", Coupled Syst. Mech., 8(6), 501-522. https://doi.org/10.12989/csm.2019.8.6.501.
- Lata, P. and Kaur, H. (2019b), "Deformation in transversely isotropic thermoelastic medium using new modified couple stress theory in frequency domain, Geomech. Eng., 19(5), 369-381. https://doi.org/10.12989/gae.2019.19.5.369.
- Lazar, M., Maugin, G.A. and Aifantis, E.C. (2005), "On dislocations in a special class of generalized elasticity", Physica B, 242(12), 2365-2390. https://doi.org/10.1002/pssb.200540078.
- Lord, H.W. and Shulman, Y. (1967), "A generalized dynamical theory of thermo-elasticity", J. Mech. Phys. Sol., 15(5), 299-309. https://doi.org/10.1016/0022-5096(67)90024-5.
- Marin, M. (1996), "Generalized solutions in elasticity of micropolar bodies with voids", Revista de la Academia Canaria de Ciencias, 8(1), 101-106.
- Marin, M. (1997), "On the domain of influence in thermoelasticity of bodies with voids", Archivum Mathematicum, 33(4), 301-308.
- Marin, M. (2010a), "Some estimates on vibrations in thermoelasticity of dipolar bodies", J. Vib. Control, 16(1), 33-47. https://doi.org/10.1177/1077546309103419.
- Marin, M. (2010b), "A partition of energy in thermoelasticity of microstretch bodies", Nonlinear Anal. RWA, 11(4), 2436-2447. https://doi.org/10.1016/j.nonrwa.2009.07.014.
- Mindlin, R. and Tiersten, H. (1962), "Effects of couple-stresses in linear elasticity", Arch. Ration. Mech. An., 11, 415-448. https://doi.org/10.1007/BF00253946
- Mindlin, R. and Eshel, N. (1968), "On first strain-gradient theories in linear elasticity", Int. J. Solids Struct., 4(1), 109-124. https://doi.org/10.1016/0020-7683(68)90036-X.
- Mindlin, R.D. (1964), "Micro-structure in linear elasticity", Arch. Ration. Mech. An., 16, 51-78. https://doi.org/10.1007/BF00248490
- Mindlin, R.D. and Tiersten, H.F. (1962), "Effects of couple-stress in linear elasticity", Arch. Ration. Mech. An., 11 (1), 415-448. https://doi.org/10.1007/BF00253946.
- Nateghi A, Salamat-talab, M., Rezapour, J. and Daneshian, B. (2012), "Size dependent buckling analysis of functionally graded micro beams based on modified couple stress theory", Appl. Math. Model., 36(10), 4971-4987. https://doi.org/10.1016/j.apm.2011.12.035.
- Nowacki, W. (1986), Theory of Asymmetric Elasticity, Pergamon Press, Headington Hill Hall, Oxford, U.K.
- Othman, M.I.A., Atwa, S.Y., Jahangir, A. and Khan, A. (2013), "Generalized magneto-thermo-microstretch elastic solid under gravitational effect with energy dissipation" Multidisciplin. Model. Mater. Struct., 9(2), 145-176. https://doi.org/10.1108/MMMS-01-2013-0005.
- Press W.H., Teukolsky S.A., Vellerling W.T. and Flannery B.P. (1986), Numerical Recipe, Cambridge University Press, Cambridge, U.K.
- Reddy, J.N. (2011), "Microstructure-dependent couple stress theories of functionally graded beams", J. Mech. Phys. Solids, 59(11),2382-2399. https://doi.org/10.1016/j.jmps.2011.06.008.
- Riaz, A., Ellahi, R., Bhatti, M.M. and Marin, M. (2019), "Study of heat and mass transfer in the Eyring-Powell model of fluid propagating peristaltically through a rectangular compliant channel", Heat. Transfer Res., 50(16), 1539-1560. https://doi.org/10.1615/HeatTransRes.2019025622.
- Sherief, H.H. and Saleh H. (2005), "A half-space problem in the theory of generalized thermoelastic diffusion", Int. J. Solids Struct., 42(15), 4484-4493. https://doi.org/10.1016/0377-0427(84)90075-X.
- Tsiatas, G.C. and Yiotis, A.J. (2010), A Microstructure-Dependent Orthotropic Plate Model based on a Modified Couple Stress Theory, in Recent Developments in Boundary Element Methods, WIT Press, Southhampton, Boston, U.S.A., 295-308.
- Tzou, D.Y. (1995), "A unified field approach for heat conduction from macro to micro scales", J. Heat Transfer, 117(1), 8-16. https://doi.org/10.1115/1.2822329.
- Vlase, S., Marin, M., O chsner, A. and Scutaru, M.L. (2019), "Motion equation for a flexible one-dimensional element used in the dynamical analysis of a multibody system", Continuum Mechanics and Thermodynamics, 31(3), 715-724. https://doi.org/10.1007/s00161-018-0722-y.
- Voigt, W. (1887), Theoretische Studien uber die Elasticit atsverh altnisse der Krystalle(Theoretical studies on the elasticity relationships of crystals), Abhandlungen der Koniglichen Gesellschaft der Wissenschaften in Gottingen, Dieterichsche Verlags-Buchhandlung.
- Yang, F., Chong, A.C.M., Lam, D.C.C. and Tong, P. (2002), "Couple stress based strain gradient theory for elasticity", Int. J. Solids. Struct., 39(10), 2731-2743. https://doi.org/10.1016/S0020-7683(02)00152-X.
- Yang, Z. and He, D. (2017) "Vibration and buckling of orthotropic functionally graded micro-plates on the basis of a re-modified couple stress theory", Results Phys., 7, 3778-3787. https://doi.org/10.1016/j.rinp.2017.09.026.
- Zenkour A.M. (2020), "Magneto-thermal shock for a fiber-reinforced anisotropic half-space due to a refined multi-dual-phase-lag model", J. Phys. Chem. Solids, 137, 109213. https://doi.org/10.1016/j.jpcs.2019.109213.
- Zihao, Y. and He, D. (2019), "A microstructure-dependent plate model for orthotropic functionally graded micro-plates", Mech. Adv. Mater. Struct., 26(14), 26, 1218-1225. https://doi.org/10.1080/15376494.2018.1432794.