DOI QR코드

DOI QR Code

Deformation in a homogeneous isotropic thermoelastic solid with multi-dual-phase-lag heat & two temperature using modified couple stress theory

  • Lata, Parveen (Department of Basic and Applied Sciences, Punjabi University) ;
  • Kaur, Harpreet (Department of Basic and Applied Sciences, Punjabi University)
  • Received : 2020.10.08
  • Accepted : 2021.02.21
  • Published : 2021.05.25

Abstract

The objective of this paper is to study the deformation in a homogeneous isotropic thermoelastic solid using modified couple stress theory subjected to inclined load with two temperatures with multi-dual-phase-lag heat transfer. Uniformly distributed and linearly distributed forces have been applied to find the functionality of the problem. Laplace and Fourier transform technique is applied to obtain the solutions of the governing equations. The displacement components, conductive temperature, stress components and couple stress are obtained in the transformed domain. A numerical inversion technique has been used to obtain the solutions in the physical domain. The effect of two temperature and inclined load is depicted graphically on the resulted quantities.

Keywords

References

  1. Abbas, I.A. and Youssef, H.M. (2013), "Two-temperature generalized thermoelasticity under ramp-type heating by finite element method", Meccanica, 48(2), 331-339. https://doi.org/10.1007/s11012-012-9604-8.
  2. Abbas, I.A. and Zenkour, A.M. (2014), "Two-temperature generalized thermoelastic interaction in an infinite fiber-reinforced anisotropic plate containing a circular cavity with two relaxation times", J. Comput. Theor. Nanosci., 11(1), 1-7. https://doi.org/10.1166/jctn.2014.3309.
  3. Arif, S.M., Biwi, M. and Jahangir, A. (2018), "Solution of algebraic lyapunov equation on positive-definite hermitian matrices by using extended Hamiltonian algorithm", Comput. Mater. Continua, 54(1), 181-195.
  4. Asghari, M., Ahmadian, M.T. Kahrobaiyan, M.H. and Rahaeifard, M. (2010), "On the size-dependent behavior of functionally graded micro-beams", Mater. Des., 31(5), 2324-2329. https://doi.org/10.1016/j.matdes.2009.12.006.
  5. Asghari, M., Rahaeifard, M., Kahrobaiyan, M.H. and Ahmadian M.T. (2011), "The modified couple stress functionally graded Timoshenko beam formulation", Mater. Des., 32(3), 1435-1443. https://doi.org/10.1016/j.matdes.2010.08.046.
  6. Bhatti, M.M., Elelamy, A.F., Sait, M.S. and Ellahi, R. (2020a), "Hydrodynamics interactions of metachronal waves on particulate-liquid motion through a ciliated annulus: Application of bio-engineering in blood clotting and endoscopy", Symmetry, 12(4), 532. https://doi.org/10.3390/sym12040532.
  7. Bhatti, M.M., Khalique, C.M., Beg, T.A., Beg, O.A. and Kadir, A. (2020b), "Numerical study of slip and radiative effects on magnetic Fe 3 O 4-water-based nanofluid flow from a nonlinear stretching sheet in porous media with Soret and Dufour diffusion", Mod. Phys. Lett. B, 34(2), 2050026. https://doi.org/10.1142/S0217984920500268.
  8. Bhatti, M.M., Marin, M., Zeeshan, A., Ellahi, R. and Abdelsalam, S.I. (2020c), "Swimming of motile gyrotactic microorganisms and nanoparticles in blood flow through anisotropically tapered arteries", Front. Phys., 8, 95. https://doi.org/10.3389/fphy.2020.00095.
  9. Biot, M.A. (1965), "Theory of stress-strain relations in an isotropic viscoelasticity, and relaxation phenomena", J. Appl. Phys., 25(11), 1385-1391. https://doi.org/10.1063/1.1721573.
  10. Chen, S. and Wang, T. (2001), "Strain gradient theory with couple stress for crystalline solids", Eur. J. Mech. A-Solid., 20(5), 739-756. https://doi.org/10.1016/S0997-7538(01)01168-8.
  11. Chen, W. and Li, X. (2013), "Size-dependent free vibration analysis of composite laminated Timoshenko beam based on new modified couple stress theory", Arch. Appl. Mech., 83(3), 431-444. https://doi.org/10.1007/s00419-012-0689-2.
  12. Chen, W. and Li, X. (2014), "A new modified couple stress theory for anisotropic elasticity and microscale laminated Kirchhoff plate model", Arch. Appl. Mech., 84(3), 323-341. https://doi.org/10.1007/s00419-013-0802-1.
  13. Chen, W. and Si, J. (2013), "A model of composite laminated beam based on the global-local theory and new modified couple-stress theory", Compos. Struct., 103, 99-107. https://doi.org/10.1016/j.compstruct.2013.03.021.
  14. Chen, W., Xu, M. and Li, L. (2012), "A model of composite laminated Reddy plate based on new modified couple stress theory", Compos. Struct., 94(7), 2143-2156. https://doi.org/10.1016/j.compstruct.2012.02.009.
  15. Cosserat, E. and Cosserat, F. (1909), Theory of Deformable Bodies, Hermann et Fils, Paris, France.
  16. Eringen, A.C. (1999), "Theory of micropolar elasticity", Microcontinuum Field Theories, Springer, New York, U.S.A., 101-248.
  17. Green A.E. and Naghdi, P.M. (1993), "Thermoelasticity without energy dissipation", J. Elasticity, 31(3), 189-208. https://doi.org/10.1007/BF00044969.
  18. Guo, J., Chen, J. and Pan, E. (2016), "Size-dependent behavior of functionally graded anisotropic composite plates" Int. J. Eng. Sci., 106, 110-124. https://doi.org/10.1016/j.ijengsci.2016.05.008.
  19. Ke, L. and Wang, Y. (2011), "Size effect on dynamic stability of functionally graded microbeams based on a modified couple stress theory", Compos. Struct., 93(2), 342-350. https://doi.org/10.1016/j.compstruct.2010.09.008.
  20. Koiter, W.T. (1964), "Couple stresses in the theory of elasticity, I and II", Philos. T. R. Soc. B, 67, 17-29.
  21. Kumar, R., Devi, S. and Sharma, V. (2017), "Effect of Hall current and rotation in modified couple stress generalized thermoelastic half space due to ramp type heating", J. Solid Mech., 9(3), 527-542.
  22. Kumar, R., Sharma, N. and Lata, P. (2016), "Thermomechanical interactions due to inclined load in transversely isotropic magnatothermoelastic medium with and without energy dissipation with two temperatures and rotation", J. Solid Mech., 8(4), 840-858.
  23. Lata, P. (2018a), "Effect of energy dissipation on plane waves in sandwiched layered thermoelastic medium", Steel Compos. Struct., 27(4), 439-451. https://doi.org/10.12989/scs.2018.27.4.439.
  24. Lata, P. (2018b), "Reflection and refraction of plane waves in layered nonlocal elastic and anisotropic thermoelastic medium", Struct. Eng. Mech., 66(1), 113-124. https://doi.org/10.12989/sem.2018.66.1.113.
  25. Lata, P. and Kaur, H. (2019a), "Axisymmetric deformation in transversely isotropic thermoelastic medium using new modified couple stress theory", Coupled Syst. Mech., 8(6), 501-522. https://doi.org/10.12989/csm.2019.8.6.501.
  26. Lata, P. and Kaur, H. (2019b), "Deformation in transversely isotropic thermoelastic medium using new modified couple stress theory in frequency domain, Geomech. Eng., 19(5), 369-381. https://doi.org/10.12989/gae.2019.19.5.369.
  27. Lazar, M., Maugin, G.A. and Aifantis, E.C. (2005), "On dislocations in a special class of generalized elasticity", Physica B, 242(12), 2365-2390. https://doi.org/10.1002/pssb.200540078.
  28. Lord, H.W. and Shulman, Y. (1967), "A generalized dynamical theory of thermo-elasticity", J. Mech. Phys. Sol., 15(5), 299-309. https://doi.org/10.1016/0022-5096(67)90024-5.
  29. Marin, M. (1996), "Generalized solutions in elasticity of micropolar bodies with voids", Revista de la Academia Canaria de Ciencias, 8(1), 101-106.
  30. Marin, M. (1997), "On the domain of influence in thermoelasticity of bodies with voids", Archivum Mathematicum, 33(4), 301-308.
  31. Marin, M. (2010a), "Some estimates on vibrations in thermoelasticity of dipolar bodies", J. Vib. Control, 16(1), 33-47. https://doi.org/10.1177/1077546309103419.
  32. Marin, M. (2010b), "A partition of energy in thermoelasticity of microstretch bodies", Nonlinear Anal. RWA, 11(4), 2436-2447. https://doi.org/10.1016/j.nonrwa.2009.07.014.
  33. Mindlin, R. and Tiersten, H. (1962), "Effects of couple-stresses in linear elasticity", Arch. Ration. Mech. An., 11, 415-448. https://doi.org/10.1007/BF00253946
  34. Mindlin, R. and Eshel, N. (1968), "On first strain-gradient theories in linear elasticity", Int. J. Solids Struct., 4(1), 109-124. https://doi.org/10.1016/0020-7683(68)90036-X.
  35. Mindlin, R.D. (1964), "Micro-structure in linear elasticity", Arch. Ration. Mech. An., 16, 51-78. https://doi.org/10.1007/BF00248490
  36. Mindlin, R.D. and Tiersten, H.F. (1962), "Effects of couple-stress in linear elasticity", Arch. Ration. Mech. An., 11 (1), 415-448. https://doi.org/10.1007/BF00253946.
  37. Nateghi A, Salamat-talab, M., Rezapour, J. and Daneshian, B. (2012), "Size dependent buckling analysis of functionally graded micro beams based on modified couple stress theory", Appl. Math. Model., 36(10), 4971-4987. https://doi.org/10.1016/j.apm.2011.12.035.
  38. Nowacki, W. (1986), Theory of Asymmetric Elasticity, Pergamon Press, Headington Hill Hall, Oxford, U.K.
  39. Othman, M.I.A., Atwa, S.Y., Jahangir, A. and Khan, A. (2013), "Generalized magneto-thermo-microstretch elastic solid under gravitational effect with energy dissipation" Multidisciplin. Model. Mater. Struct., 9(2), 145-176. https://doi.org/10.1108/MMMS-01-2013-0005.
  40. Press W.H., Teukolsky S.A., Vellerling W.T. and Flannery B.P. (1986), Numerical Recipe, Cambridge University Press, Cambridge, U.K.
  41. Reddy, J.N. (2011), "Microstructure-dependent couple stress theories of functionally graded beams", J. Mech. Phys. Solids, 59(11),2382-2399. https://doi.org/10.1016/j.jmps.2011.06.008.
  42. Riaz, A., Ellahi, R., Bhatti, M.M. and Marin, M. (2019), "Study of heat and mass transfer in the Eyring-Powell model of fluid propagating peristaltically through a rectangular compliant channel", Heat. Transfer Res., 50(16), 1539-1560. https://doi.org/10.1615/HeatTransRes.2019025622.
  43. Sherief, H.H. and Saleh H. (2005), "A half-space problem in the theory of generalized thermoelastic diffusion", Int. J. Solids Struct., 42(15), 4484-4493. https://doi.org/10.1016/0377-0427(84)90075-X.
  44. Tsiatas, G.C. and Yiotis, A.J. (2010), A Microstructure-Dependent Orthotropic Plate Model based on a Modified Couple Stress Theory, in Recent Developments in Boundary Element Methods, WIT Press, Southhampton, Boston, U.S.A., 295-308.
  45. Tzou, D.Y. (1995), "A unified field approach for heat conduction from macro to micro scales", J. Heat Transfer, 117(1), 8-16. https://doi.org/10.1115/1.2822329.
  46. Vlase, S., Marin, M., O chsner, A. and Scutaru, M.L. (2019), "Motion equation for a flexible one-dimensional element used in the dynamical analysis of a multibody system", Continuum Mechanics and Thermodynamics, 31(3), 715-724. https://doi.org/10.1007/s00161-018-0722-y.
  47. Voigt, W. (1887), Theoretische Studien uber die Elasticit atsverh altnisse der Krystalle(Theoretical studies on the elasticity relationships of crystals), Abhandlungen der Koniglichen Gesellschaft der Wissenschaften in Gottingen, Dieterichsche Verlags-Buchhandlung.
  48. Yang, F., Chong, A.C.M., Lam, D.C.C. and Tong, P. (2002), "Couple stress based strain gradient theory for elasticity", Int. J. Solids. Struct., 39(10), 2731-2743. https://doi.org/10.1016/S0020-7683(02)00152-X.
  49. Yang, Z. and He, D. (2017) "Vibration and buckling of orthotropic functionally graded micro-plates on the basis of a re-modified couple stress theory", Results Phys., 7, 3778-3787. https://doi.org/10.1016/j.rinp.2017.09.026.
  50. Zenkour A.M. (2020), "Magneto-thermal shock for a fiber-reinforced anisotropic half-space due to a refined multi-dual-phase-lag model", J. Phys. Chem. Solids, 137, 109213. https://doi.org/10.1016/j.jpcs.2019.109213.
  51. Zihao, Y. and He, D. (2019), "A microstructure-dependent plate model for orthotropic functionally graded micro-plates", Mech. Adv. Mater. Struct., 26(14), 26, 1218-1225. https://doi.org/10.1080/15376494.2018.1432794.