참고문헌
- Kuss, D. J., & Griffiths, M. D. (2017). Social networking sites and addiction: Ten lessons learned. International journal of environmental research and public health, 14(3), 311. https://doi.org/10.3390/ijerph14030311
- Phua, J., Jin, S. V., & Kim, J. J. (2017). Uses and gratifications of social networking sites for bridging and bonding social capital: A comparison of Facebook, Twitter, Instagram, and Snapchat. Computers in human behavior, 72, (pp. 115-122). https://doi.org/10.1016/j.chb.2017.02.041
- Panek, E. T., Nardis, Y., &Konrath, S. (2013). Defining social networking sites and measuring their use: How narcissists differ in their use of Facebook and Twitter. Comput. Hum. Behav., 29(5), 2004-2012. https://doi.org/10.1016/j.chb.2013.04.012
- Myers, S. A., Sharma, A., Gupta, P., & Lin, J. (2014, April). Information network or social network? The structure of the Twitter follow graph. In Proceedings of the 23rd International Conference on World Wide Web (pp. 493-498)
- Wang, D., Navathe, S. B., Liu, L., Irani, D., Tamersoy, A., &Pu, C. (2013, October). Click traffic analysis of short url spam on twitter. In 9th IEEE International Conference on Collaborative Computing: Networking, Applications and Worksharing (pp. 250-259). IEEE.
- Thomas, K., Grier, C., Song, D., and Paxson, V. (2011, November). Suspended accounts in retrospect: an analysis of twitter spam. In Proceedings of the 2011 ACM SIGCOMM conference on Internet measurement conference (pp. 243-258).
- Yip, M., Shadbolt, N., & Webber, C. (2012, June). Structural analysis of online criminal social networks. In 2012 IEEE International Conference on Intelligence and Security Informatics (pp. 60-65). IEEE.
- Kay, A. (2006). Social capital, the social economy and community development. Community Development Journal, 41(2), (pp. 160-173). https://doi.org/10.1093/cdj/bsi045
- Beutel, A., Xu, W., Guruswami, V., Palow, C., &Faloutsos, C. (2013, May). Copycatch: stopping group attacks by spotting lockstep behavior in social networks. In Proceedings of the 22nd international conference on World Wide Web (pp. 119-130).
- Ahmed, F., &Abulaish, M. (2012, June). An mcl-based approach for spam profile detection in online social networks. In 2012 IEEE 11th international conference on trust, security and privacy in computing and communications (pp. 602-608). IEEE
- Rieck, K., Holz, T., Willems, C., Dussel, P., &Laskov, P. (2008, July). Learning and classification of malware behavior. In International Conference on Detection of Intrusions and Malware, and Vulnerability Assessment (pp. 108-125). Springer, Berlin, Heidelberg.
- Mohtasebi, S., &Dehghantanha, A. (2011, July). A mitigation approach to the privacy and malware threats of social network services. In International Conference on Digital Information Processing and Communications (pp. 448-459). Springer, Berlin, Heidelberg.
- Blanzieri, E., &Bryl, A. (2008). A survey of learning-based techniques of email spam filtering. Artificial Intelligence Review, 29(1), (pp. 63-92). https://doi.org/10.1007/s10462-009-9109-6
- Sahami, M., Dumais, S., Heckerman, D., & Horvitz, E. (1998, July). A Bayesian approach to filtering junk e-mail. In Learning for Text Categorization: Papers from the 1998 workshop (Vol. 62, (pp. 98-105).
- Grier, C., Thomas, K., Paxson, V., & Zhang, M. (2010, October). @ spam: the underground on 140 characters or less. In Proceedings of the 17th ACM conference on Computer and communications security (pp. 27-37).
- Song, J., Lee, S., & Kim, J. (2011, September). Spam filtering in twitter using sender-receiver relationship. In International workshop on recent advances in intrusion detection (pp. 301-317). Springer, Berlin, Heidelberg.
- Lin, G., Sun, N., Nepal, S., Zhang, J., Xiang, Y., & Hassan, H. (2017). Statistical twitter spam detection demystified: performance, stability and scalability. IEEE access, 5, (pp.11142-11154). https://doi.org/10.1109/ACCESS.2017.2710540
- Hai, Q. T., & Hwang, S. O. (2018). An efficient classification of malware behavior using deep neural network. Journal of Intelligent & Fuzzy Systems, 35(6), (pp. 5801-5814). https://doi.org/10.3233/JIFS-169823
- Kaur, J., &Sabharwal, M. (2018). Spam detection in online social networks using feed forward neural network. In RSRI conference on recent trends in science and engineering 2, (pp. 69-78.
- Jain, G., Sharma, M., & Agarwal, B. (2019). Spam detection in social media using convolutional and long short term memory neural network. Annals of Mathematics and Artificial Intelligence, 85(1), 21-44. https://doi.org/10.1007/s10472-018-9612-z
- https://www.kaggle.com/uciml/sms-spam-collection-dataset. Accessed on 22.02.2020.
- https://gist.github.com/sebleier/554280 Accessed on 22.02.2020.
- Wilbur, W. J., &Sirotkin, K. (1992). The automatic identification of stop words. Journal of information science, 18(1), 45-55. https://doi.org/10.1177/016555159201800106
- Anger, I., &Kittl, C. (2011, September). Measuring influence on Twitter. In Proceedings of the 11th international conference on knowledge management and knowledge technologies (pp. 1-4).
- Yang, X., Macdonald, C., &Ounis, I. (2018). Using word embeddings in twitter election classification. Information Retrieval Journal, 21(2-3), 183-207. https://doi.org/10.1007/s10791-017-9319-5
- Sidorov, G., Gelbukh, A., Gomez-Adorno, H., & Pinto, D. (2014). Soft similarity and soft cosine measure: Similarity of features in vector space model. Computacion y Sistemas, 18(3), 491-504.
- Salehi, S., Selamat, A., &Bostanian, M. (2011, July). Enhanced genetic algorithm for spam detection in email. In 2011 IEEE 2nd international conference on software engineering and service science (pp. 594-597). IEEE.
- Sivanandam, S. N., &Deepa, S. N. (2008). Genetic algorithm optimization problems. In Introduction to genetic algorithms (pp. 165-209). Springer, Berlin, Heidelberg.
- Feng, W., Sun, J., Zhang, L., Cao, C., & Yang, Q. (2016, December). A support vector machine based naive Bayes algorithm for spam filtering. In 2016 IEEE 35th International Performance Computing and Communications Conference (IPCCC) (pp. 1-8). IEEE.
- Diale, M., Van Der Walt, C., Celik, T., &Modupe, A. (2016, November). Feature selection and support vector machine hyperparameter optimisation for spam detection. In 2016 Pattern Recognition Association of South Africa and Robotics and Mechatronics International Conference (PRASA-RobMech) (pp. 1-7). IEEE.
- Madisetty, S., &Desarkar, M. S. (2018). A neural network-based ensemble approach for spam detection in Twitter. IEEE Transactions on Computational Social Systems, 5(4), (pp. 973-984). https://doi.org/10.1109/tcss.2018.2878852
- Murugan, N. S., & Devi, G. U. (2018). Detecting streaming of Twitter spam using hybrid method. Wireless Personal Communications, 103(2), (pp. 1353-1374). https://doi.org/10.1007/s11277-018-5513-z