
IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.1, January 2021

84

Manuscript received January 5, 2021
Manuscript revised January 20, 2021

https://doi.org/10.22937/IJCSNS.2021.21.1.13

UML Modeling to TM Modeling and Back

Sabah Al-Fedaghi

Computer Engineering Department, Kuwait University, Kuwait

Summary
Certainly, the success of the Unified Modeling Language
(UML) as the de facto standard for modeling software
systems does not imply closing the door on scientific
exploration or experimentation with modeling in the field.
Continuing studies in this area can produce theoretical
results that strengthen UML as the leading modeling
language. Recently, a new modeling technique has been
proposed called thinging machine (TM) modeling. This
paper utilizes TM to further understand UML, with two
objectives:
(a) Fine issues in UML are studied, including theoretical

notions such as events, objects, actions, activities, etc.
Specifically, TM can be used to solve problems related
to internal cross-diagram integration.

(b) TM applies a different method of conceptualization,
including building a model on one-category ontology
in contrast to the object-oriented paradigm. The long-
term objective of this study is to explore the possibility
of TM complementing certain aspects in the UML
methodology to develop and design software systems.

Accordingly, we alternate between UML and TM
modeling. A sample UML model is redesigned in TM, and
then UML diagrams are extracted from TM. The results
clarify many notions in both models. Particularly, the TM
behavioral specification seems to be applicable in UML.

Key words:
UML, conceptual model, diagrammatic representation, system
behavior, modeling time

1. Introduction

Exploring modeling in the Unified Modeling
Language (UML) context is important for progress in
conceptual modeling in software engineering. According
to [1], before UML standards, diagrammatic software
modeling was plagued by the incompatibility of different
notations, the absence of standardized notation, and the
tiny and fragmented nature of the modeling tools market.
Of the few tools that were available, many only allowed
sketching of software designs and design documentation,

but were rarely integrated into the software development
life cycle. Now, UML has become the lingua franca of
software development, supported by every major
commercial IT vendor as well as a flourishing selection of
open-source tools.

1.1 UML Advantages and Disadvantages

Most software professionals are at least acquainted
with, if not well-versed in, UML diagrams, making it the
go-to option to explain software design models [2].
According to [2], “What makes UML well-suited to and
much-needed for software development is its flexibility.
UML is a rich and extensive language that can be used to
model not just object-oriented software engineering, but
application structure, behavior, and business processes
too.” For [3], documentation and modeling are perhaps
two of the most difficult tasks within the software
development process. The absence of design
documentation is fine in the short term, but it can become
a problem in the long run, and UML has become a huge
help in such circumstances to alleviate ambiguity and
questions regarding the design [2]. According to [2], there
is no holistic or appropriate substitute for UML. Domain-
specific languages for diagrammatic modeling have been
introduced, but none of them has found wide acceptance,
supporting UML as the best option among diagrammatic
languages [2]. For some researchers, UML has become
synonymous with software modeling [4]. The use of UML
as a language leads to an improvement in cooperation
between technical and nontechnical competencies. It helps
in better understanding systems, in revealing simplification,
and in easier recognition of possible risks. Through early
detection of errors, costs can be reduced during the
implementation phase [5].

On the other hand, a considerable portion of
software developers do not use UML [2]. There is no need
for a UML diagram to communicate designs. One can do
that with informal box-and-line diagrams, such as those
drawn in PowerPoint. Additionally, UML has grown in
complexity, which makes many people feel as though they
are better off without it [2]. Complexity is the number one
problem in software, and according to [6], “our co-workers

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.1, January 2021

85

don’t see the complexity that they have created and no
amount of knowledge or expertise will slay essential
complexity.”

An important motivation for this paper is that UML
has become part of many software engineering course
curricula at universities worldwide. It is common for
students to have difficulty absorbing UML due to its
complexity [7]. Often, students think that UML diagrams
are useless and serve only as documentation that no one
reads [8].

The number of UML diagram types is still a
disturbing issue. The model multiplicity problem [9]
concerns the integrated view of structure and behavior.
The issue concerns how UML diagrams are associated
with one another. Génova and Nubiol [3] considered such
a matter to be primarily related to the role of software
development methodology, which can best answer this
question. Soffer [10] argued that because UML evolved
bottom-up from object-oriented programming concepts, it
lacks a system-theoretical ontological foundation
encompassing observations about common features
characterizing systems regardless of domain. In this
context, the Object-Process Language (OPL) [11-12] was
proposed as a modeling language that is both formal and
intuitive. OPM was developed as a comprehensive
approach to systems engineering that integrates function,
structure, and behavior in a single unifying model [11].
OPM is specified as ISO/PAS 19450 [13], and can be
considered an alternative to UML. Applying thinging
machine (TM) modeling in the context of OPM is as
important as applying it to UML.

1.2 Motivation and Objectives

Certainly, the success of UML as the de facto
modeling language in software engineering does not
imply ceasing scientific exploration or experimentation
with other methodologies. Continuing studies in this area
can produce theoretical results that strengthen UML as the
leading modeling language. Recently, a new modeling
technique has been proposed, called TM modeling [13-18].
TM is a good tool to analyze different modeling
techniques, such as data flow diagrams, flowcharts, etc.
This paper connects TM to UML with two objectives:

(a) TM is used to handle fine issues in UML by

investigating several theoretical notions such as events,
objects, actions, activities, etc. Specifically, TM can

be used to investigate UML problems related to
internal cross-diagram integration.

(b) TM applies a different method of

conceptualization, including building a model on
one-category ontology in contrast to the object-
oriented paradigm. The long-term objective of
this study is to explore how to align TM with the
UML methodology to develop and design
software systems.

Accordingly, we alternate between UML and TM
modeling. A sample UML model is redesigned in TM, and
then UML diagrams are extracted from the TM model.
Our results clarify many notions in both models.
Particularly, the TM behavioral specification seems to be
applicable in UML.

1.3 Outline

This paper is organized as follows:

1. Section 2 provides a brief overview of TM.
2. Section 3 includes a sample UML model from

Chapter 5 of Ian Sommerville’s book [20], which
was developed as part of the requirements
engineering and system design processes.
According to Sommerville [20], after one has read
the chapter, one will.

 Understand how diagrammatic models can be

used to represent software systems and why
several types of model are needed to fully
represent a system.

 Understand the fundamental system modeling
perspectives of context, interaction, structure, and
behavior.

 Have been introduced to model-driven
engineering, where an executable system is
automatically generated from structural and
behavioral models. [20].

Sommerville’s UML model involves developing the
specification for a mental health care (Mentcare)
patient information system. This system is intended
to manage information about patients attending
mental health clinics.

3. Sommerville starts the modeling process with an
activity diagram for the Mentcare system; hence,
we construct a corresponding TM model. Our
strategy is to fit all UML diagrams into one TM
diagram.

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.1, January 2021

86

4. Next, Sommerville introduces use case diagrams for
the Mentcare system; accordingly, we extend the
TM model to assimilate these use cases.

5. Subsequently, Sommerville presents sequence
diagrams. It is interesting to note that the contents
of such diagrams are already modeled in the TM
model in Step 4.

6. The UML diagram is also incorporated into the TM
model through a sample association between two
classes. The association is applied as a constraint
diagram inside the extended TM diagram.

7. Lastly, Sommerville progresses to UML modeling
of the behavior. Here, Sommerville turns to a state
diagram of a microwave oven. It is not clear why
the state diagram of the Mentcare system is not
developed. However, we continue modeling the
behavior of the Mentcare system by developing the
TM events diagram and behavior diagram.

2. Thinging Machine Modeling

This section presents a summary from published
papers [13-18] that briefly describes TM modeling. TM
modeling seems to be a promising methodology and has
been applied in many areas, such as network
documentation, robot architecture, and security.

The term thinging in TM comes from Heidegger
[21], in whose works thinging expresses how a “thing
things,” which he explained as gathering or tying together
its constituents. In TM modeling, things are unified with
the concept of a process by being viewed as single
ontological things/machines, or thimacs, which populate
the world. A unit in such a universe has a dual role as a
thing and as a machine. Machine refers to the abstract
machine shown in Fig. 1, which is a generalization of the
known input-process-output model. Input and output are
lumped together in the transfer stage (Fig. 1). This
represents the machine’s gate, where things flow to and
from other machines. The release stage is a waiting stage
for things in the machine until transfer is activated (e.g.,
goods produced by a factory are stored until transported in
trucks). The receive stage represents the phase in which
things flowing from other machines arrive to be accepted
inside the machine or sent back outside (e.g., wrong
address). For simplicity’s sake, in the modeling examples
in this paper, we assume that things that arrive are always
accepted; hence, we always use the receive stage in these
examples.

The create stage in Fig. 1 denotes the appearance of a
new thing in the machine (e.g., a generator’s output after
converting a form of energy into electricity). The process
stage in Fig. 1 refers to changing the form of a thing
without generating a new entity (e.g., transforming a
decimal number to binary form). A stage in TM might
include a storage area (represented by a cylinder) that
accommodates things inside the stage. Fig. 2 shows a
simplification of Fig. 1, where things flow from the output
of one machine to the input of another machine.

A thing in TM modeling is whatever is created,

processed, released, transferred, or received. Thus, a
machine creates, processes, releases, transfers, and
receives things. Hence, create, process, release, transfer,
and receive are called actions. The arrows in Fig. 1 denote
the flow of things from one stage to another or within the
machine.

The TM model is the grand machine that results from
smaller machines. To facilitate shifting among flows (e.g.,
processing electricity creates cold air), the TM model
includes triggering, denoted by dashed arrows.

Process

Transfer

Release Receive

Create

Fig. 2 Simplified TM model.

Output Input

Arrive

Accept

Process

Transfer

Release Receive

Create

Other Machines

Fig. 1 Thinging machine model.

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.1, January 2021

87

3. From UML to TM Modeling

Note that the TM produces three models: static, event,
and behavioral models. In UML, one possible approach to
the order in which project diagrams can be implemented is
use case diagram, activity diagram, class diagram,
sequence diagram, and state diagram [3]. In Chapter 5 of
[20], a sample UML model is developed as part of
requirements engineering and system design processes.
This order may be iterative—for example, according to
[22], we can identify classes from dynamic models and
public operations in classes from actions and activities in
state chart diagrams, as well as activity lines in sequence
diagrams. Sommerville’s book Software Engineering [20]
roughly follows these phases of development. Erickson
and Siau [23] showed that five UML diagram types could
represent most system essentials. Hence, [20] concentrates
on these five UML diagram types: activity diagrams, use
case diagrams, sequence diagrams, class diagrams, and
state diagrams.

3.1 Context Models

According to [20], at the first stage in the specification
of a system, we should decide on the system boundaries—
that is, on what is and is not part of the system being
developed. The Mentcare system, for example, is intended
to manage information about patients attending mental
health clinics. Simple context models are used, along with
others such as business process models (pre-UML
diagrams). Sommerville [20] gives a context model that
shows the Mentcare system and the other systems in its
environment.

3.2 Starting Point: Activity Diagram

Then, [20] starts with a UML activity diagram (Fig. 3)
to show where the Mentcare system is used in an
important mental health care process—involuntary
detention. Sommerville [20] mentions that the UML
activity model illustrates how the software transforms an
input to a sequence of commands. There is no definition of
what this activity is, besides examples such as the
commands analyze, compute, and control. We can assume
that all commands are activities. “Generic activities” are
mentioned, but not defined. Activity diagrams show the
activities involved in a process or in data processing. Note
that in [20]’s discussion, such activities are different from
the so-called process activities (e.g., collecting
requirements). UML activity diagrams can be used to
show the business processes in which systems are used. A
UML activity diagram also shows where the Mentcare
system is used in the mental health care process.

The result of such a discussion of the notion of activity
is a vague idea of what an activity is. This is a common
feature in UML literature. Many resources deal with what
an activity diagram is, but rarely is the question of what
defines an activity raised. An activity may be defined as a
kind of operation of the system. Some modelers declare
that an activity represents a behavior that is composed of
individual elements, which are actions [24]. The activity
diagram is based on an ambiguous notion. Sommerville’s
starting with the activity diagram to build the Mentcare
system is not a promising beginning for modeling.

In contrast, the TM model is built on five generic
actions, as specified in the previous section. However, we
have no choice but to follow [20]’s UML path; we develop
the TM that corresponds to the activity diagram of Fig. 3,
as shown in Fig. 4.

 In Fig. 4, a person (circle 1) is brought to the

Mentcare system (2). In the activity diagram, it is not
clear who made such a decision; hence, we assume
that such an action happens in the Mentcare facility. A
detention decision is made (3) and communicated (4)
to the person. Rights are also provided (5 and 6).

 If the person is dangerous (7) and there is no secure
location available (8), then the involved person is sent
to the police station (9). If the person is dangerous
(10) and a secure location is available, the person is
sent to that place (11). If the person is not dangerous
(12), he or she is admitted as a patient (13).

 In the three cases of sending the person to the police
station (9), sending the person to a secure location
(11), and admittance to the hospital (13), information
is generated (14) and sent to the social services (15),
the next of kin (16), and the Mentcare information
system (17, 18, and 19).

Fig. 3 Mentcare system activity diagram (partial from
[20]).

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.1, January 2021

88

It can be observed that the TM representation is more
complex than the activity diagram. However, if less
precise description is desired, we can eliminate the release,
transfer, and receive stages under the assumption that the
direction of arrows is sufficient to express the flows in the
model. With this simplification, Fig. 5 is produced.
Additionally, it is not difficult to return to the activity
diagram if desired. Fig. 6 shows an initial step in this
direction.

3.3 Step Two: Use Case Diagrams

Sommerville [20] continues modeling the Mentcare
system by introducing three use case diagrams (see partial
representation in Fig. 7):

- Medical receptionist/patient record system
- Tabular description of the transfer data use case
- A diagram that maps the medical receptionist

registering a patient, unregistering a patient,
viewing patient information, transferring data,
and contacting the patient.

 Mentcare System

 Detention
decision

Mentcare information system

Processed

 Secure location

Secure location not available

Secure location available

Processed
Dangerous

Not
Dangerous

Admitted Persons

Next
of
kin

Create

Rights
Create

Database

Information

Process

Police
station

Social
care

Person

Fig. 5 Simplification of Fig. 4.

Fig. 6 A step toward converting TM diagram to
activity diagram

Fig. 7. Use case diagram (partial from [20]).

Person

ProcesseTransfer
Mentcare System

Detention
decision

Receive

Transfer

Receive

Mentcare information system

Processed

Secure location

Receive

Secure location not available

Secure location available

Processed
Dangerous

Not
Dangerous

 Admitted
Persons

Receive

Next
of
kin

Create

Receive

Transfer Release

Transfer

Release

Transfer

Rights

Release

Transfer

Create

Release

Transfer

Database

Information

R
ec

ei
ve

T
ra

ns
fe

r

Transfer

Process

1 2

3

4
Transfer

5

6

7 8 9

Police
station

10
11

12

13

Social
care

14

15

16

19 18 17

Fig. 4 TM model that corresponds to the activity diagram (see Fig. 3).

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.1, January 2021

89

Our strategy is to include all UML diagrams in one TM
diagram. Fig. 8 shows an extension of the TM model that
corresponds to the activity diagram and includes
descriptions in the use cases above.

We find that the medical receptionist (20) is the one in
charge of the information system. The medical receptionist
has a security clearance to access the system (21). Access
is requested (22 and 23) and permission is given (24 and
25).

Mentcare system
Medical receptionist

 Patient record

 Create

Permission

Transfer Release Authorization Transfer Receive Create

Transfer Release Receive Transfer

 Register patient

View patient info.

Contact patient

Process

Process

Create

Process

Unregister patient

Record data
Create

Transfer Release R
ec

ei
ve

 R
elease Transfer

Process

T
ra

ns
fe

r

Create Transfer Release

Create

Transfer
Record data

Receive

Transfer

Transfer

Release

Receive

Create

Receive

Transfer

Receive

Process

Process

Transfer

Release

Transfer

Process

Transfer

Transfer

Transfer

Release

General patient record
database (a health authority)

Transfer data

Release

Process

Transfer

Transfer

Receive

Receive

Process

Release

Transfer

Receive

Person

Processed Transfer
Mentcare System

Detention
decision

Receive

Transfer

Receive

Processed

Secure location

Receive

Secure location not available

Secure location available

Processed
Dangerous

Not
Dangerous

Admitted
Persons

Receive

Next
of
kin

Create

Receive

Transfer Release

Transfer

Release

Transfer

Rights

Release

Transfer

Create

Release

Transfer

Information

Transfer

Transfer

Police
station

Social
care

20

 Data
Transfer Receive Release Transfer Transfer Receive Release

21

22 23

25 24

26

27

28

29

30

File.

31

32

33

34

35

36

Module to
insert a
new 37

39

38

40

41

42

43

44 45
47

46

Patient

Transfer

Fig. 8 TM model, extended to include use cases.

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.1, January 2021

90

Additionally, the medical receptionist can register the
patient (26), unregister the patient (27), view patient
information (28), transfer data (29), and contact the patient
(30).

Register patient: After receiving permission to access the
information system, the medical receptionist inputs the
patient data, which flows to the system (31). The module
that handles constructing a new record takes this data (32a)
along with (32b) the current patient file (33 and 34) and
processes them (35). The result of this processing is a new
version of the file that contains the new record. Note that
the triggering (35 and 36) in the diagram hides the details
of how to insert a record into a file.

Unregister patient: The medical receptionist sends an
identifier of the record requiring deletion to the system
(37). The module that facilitates this deletion takes (37a)
this identifier along with (37b) the patient file (38 and 39)
to process them (40), producing a new version of the file
without the deleted record (41). Note that the triggering
(40 and 41) hides the details of how to delete a record
from a file.

View patient info: The medical receptionist inputs the
record data (e.g., key) into the system (42). Processing a
record key (43) along with the patient file triggers the
retrieval of the required record (44) and sends it to the
medical receptionist (45).

Transfer data and contact patient: These two functions
involve processing (46 and 47) the received record (45),
e.g., formulating the information and sending the resulting
message to the patient or the general patient record
database (a health authority).

3.4 Sequence Diagrams

Sommerville [20] continues modeling the Mentcare
system by introducing two sequence diagrams. Usually, in
UML, sequence diagrams are derived from use cases [22].
Sommerville’s [20] first sequence diagram models the
interactions involved in the “view patient information” use
case, where a medical receptionist can see some patient
information. This is already incorporated in the TM
diagram of Fig. 8. It involves an extension of the
authorization (Circle 21 in Fig. 8) to respond with an error
message if the request for authorization is denied, which
can easily be added to the TM diagram. The second
sequence diagram is another example of a sequence
diagram that illustrates additional features including direct
communication between actors (e.g., medical receptionist
and others).

3.5 Class Diagrams

Sommerville [20] continues modeling the Mentcare
system by introducing class diagrams. First, [20] gives the
association shown in Fig. 9. In TM modeling, such an
association is viewed as a constraint. A constraint can be
incorporated in the TM diagram in the usual way. The
involved constraint can be viewed as meaning that when
any record is created in the patient file, there should only
be one record for any given patient. This is modeled in a
new version of the static model (Fig. 10). When a record
arrives to be registered in the patient’s file (Circle 48),
along with the file (49)—actually the file address—they
are first processed by the constraint module (50 and 51).
Note that the file flow to the constraint module is a
conceptual flow (it may involve the address of the file). If
the record is not in the file (51), then the record is inserted
into the file to create a new version of the file (52 and 53).

Other descriptions given by [20] can easily be
inserted in the TM diagram. For example, [20] introduced
a consultation class, where each patient may be associated
with several consultation records. In TM, we add the TM
machine that an admitted patient goes to a doctor for
consultation. In each meeting, a consultation record is
created and sent to the medical receptionist, who inputs the
consultation record after linking it to the patient record.
We will not extend the static TM further because the
process of combining all UML diagrams into a single TM
diagram has become clear.

However, [20] does not give a clear description of the
class structure in this example. The patient record is
specified within the use case as “a receptionist may
transfer personal information (address, phone number,
etc.).” To illustrate the class notion within TM modeling,
Fig. 11 shows a simplified TM specification of the flow of
data from the receptionist screen to construct a record in
the patient’s file. Such TM specifications can be developed
to any level of granularity.

Patient Patient record
1 1

Fig. 9 Association between two classes (redrawn from
[20]).

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.1, January 2021

91

Mentcare system Medical receptionist

 Patient record

 Create

Permission

Transfer Release Authorization Transfer Receive Create

Transfer Release Receive Transfer

 Register patient

View patient info.

Contact patient

Process

Process

Create

Process

Unregister patient

Record data
Create

Transfer Release R
ec

ei
ve

 R
elease Transfer

Process

T
ra

ns
fe

r

Create Transfer Release

Create

Transfer
Record data

Receive

Transfer

Release

Create

Receive

Transfer

Receive

Process

Process

Transfer

Release

Transfer

Transfer

Transfer

Transfer

Release

General patient record
database (health authority)

Transfer data

Release

Process

Transfer

Transfer

Receive

Receive

Process

Release

Transfer

Receive

Person

Processed Transfer
Mentcare System

Detention
decision

Receive

Transfer

Receive

Processed

Secure location
Receive

Secure location not available

Secure location available

Processed
Dangerous

Not
Dangerous

Admitted
Persons

Receive

Next
of
kin

Create

Receive

Transfer Release

Transfer

Release

Transfer

Rights

Release

Transfer

Create

Release

Transfer

Information

Transfer

Transfer

Police
station

Social
care

20

 Data

21

22 23

25 24

27

28

29

30

File.

34

37

39

38

40

41

42

43

44 45

46

Patient

Transfer

Receive

Process
If no record in
the file with

the same key

Constraint

Release

Transfer

T
ra

ns
fe

r

R
el

ea
se

Receive Transfer Transfer Release Transfer

Process

Insert a
new

record

Transfer

Receive

48

49

51

50

52

53

Receive
26

Fig. 10 TM model after including the constraint that each patient has only one record (circle 51).

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.1, January 2021

92

3.6 Modeling the Behavior of the Mentcare System

Modeling of behaviors concerns the description of
processes, chronological dependencies, state changes, the
treatment of events, etc. In UML, behavior does not exist
independently, but rather always affects certain objects.
The execution of a behavior can always be traced to an
object [3].

Sommerville [20] continues to model the behavior of
the Mentcare system. The behavior mode is based on
UML state diagrams, which show how the system reacts to
internal and external events. State diagrams are the crucial
notation to relate data aspects and behavior of objects.
Usually, one state diagram is constructed for each class
with important dynamic behavior [22]. Behavior models
show what happens or what is supposed to happen when a
system responds to a stimulus from its environment (e.g.,
data triggers processing, or an event happens that triggers
system processing). Data flow diagrams that can be
represented in UML are mentioned using the activity
model of an insulin pump’s operation. Activity diagrams
are sometimes viewed as a special type of state diagram
[19]. UML sequence diagrams of business processes are

also discussed as an alternative way of showing the
sequence of processing in a system.

Finally, state diagrams are discussed to support UML
event-based modeling. State diagrams show system states
and events that cause transitions from one state to another
[20]. A state diagram is described here, but it is a state
diagram of a microwave oven—there is no behavior model
of the Mentcare system. Perhaps the connection to
behavioral aspects is given by the methods of the class
diagram, but this is not stated explicitly. This is typical of
UML modeling materials: diagrams are presented in a
fragmented way, and the discussion gives the behavioral
description for a small example of completely different
problems. Accordingly, we have to abandon the UML
model of the Mentcare system and continue to behavioral
modeling using only the TM model.

4. Modeling the Behavior of the Mentcare

System in TM

We start by defining what an event is. An event is a
machine that has

(a) a time submachine,
(b) a region submachine where the event happens,

and
(c) another submachine (e.g., intensity). This

characteristic will not be used in the Mentcare
case study.

For example, in the context of the Mentcare model, Fig. 12
shows the model of the event John was sent to the police
station on 1/1/2021 because a secure location was not
available. The region is a sub-diagram of the static model.
Note that such an event is not primitive (genetic). Genetic
events are built upon the regions of genetic actions.

In UML, four different specifications are provided for
behavioral descriptions:
 State diagrams
 Activities and actions
 Interactions
 Use cases [3]

 Person Processed
Secure location not

available
Transfer Release

Police
station

Transfer Release Transfer Receive
Time

Process
(takes its course)

Create Event

Fig. 12 The event John was sent to the police station on
1/1/2021 because a secure location was not available.

Name
Address

Admit. Date

Patient record

Create Receive
Receive

Receive

Register New Patient

Address

Name
Admit. Date

FILL CREATE

I/O
SYSTEM

Process

Transfer
Transfer

Release

Transfer

Receive

Transfer

Release

Transfer

Receive

Transfer

Release

Transfer

Release

Transfer

Create

Transfer

Release

Transfer

Receive

Transfer

Release

Transfer

DATABASE
SYSTEM

Create Create

Fig. 11 Simplified TM specification of the notion of
class and its methods.

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.1, January 2021

93

UML behavior is principally event oriented. The execution
of behaviors is always triggered by an event. Behavior can
be started either directly or indirectly via a trigger such as
when the medical receptionist registers a patient, as
modeled in a use case diagram. However, it is clear by
now that in a use case, when the Mentcare receptionist is
connected by an arrow to “register patient,” this is not an
event but a region, which may not be a region of event. It
is a conceptual region, which may or may not be a space
region. According to [3], a use case diagram is actually a
structure diagram: it does not describe processes and
behavioral patterns, but only relationships.

A TM static model can be constructed. For example,
we can construct the static TM description for Alice
walked in the direction in which the March Hare was said
to live. The model is a TM region that has actions and a
chronology of these actions but cannot be event-ized
because it never happened. Similarly, the Mentcare
receptionist connected by an arrow to “register patient” in
the use case is a region of (possible) event when time is
applied to the region. Hence, use case interactions,
activities, and state diagrams in UML do not involve
behavioral modeling.

Accordingly, we identify the following events in Fig. 13.

Event 1 (E1): A person is brought to the Mentcare center.
Event 2 (E2): A detention decision is made, and the
person is informed.
Event 3 (E3): The detainee is informed of his or her
rights.
Event 4 (E4): The detainee is examined and found to be
dangerous.
Event 5 (E5): The detainee is transferred to the police
because no other secure location is available.
Event 6 (E6): The detainee is transferred to a secure
location that is available.
Event 7 (E7): It is determined that the person is not
dangerous.
Event 8 (E8): Information about the detainee is sent to
the social services, his or her next of kin, and a medical
receptionist.
Event 9 (E9): The medical receptionist requests
authorization to access the system and receives approval.
Event 10 (E10): The medical receptionist generates a
request to register a patient, which flows to the
information system.
Event 11 (E11): The medical receptionist generates a
request to unregister a patient, which flows to the
information system.
Event 12 (E12): The medical receptionist generates a
request to view patient information.
Event 13 (E13): The information system checks whether
a new patient is already in the system.

Event 14 (E14): The information system creates a record
for the new patient in the database.
Event 15 (E15): The information system unregisters a
patient.
Event 16 (E16): The information system retrieves the
requested patient information.
Event 17 (E17): The requested patient information flows
to the medical receptionist.
Event 18 (E18): The medical receptionist sends the
information to the general patient record database (a
health authority)
Event 19 (E19): The medical receptionist contacts the
patient.

Fig. 14 shows the behavioral model of the Mentcare
system.

5. Conclusion

This paper aimed at establishing connections between
TM and UML, with a long-term objective of exploring the
possibility of aligning a new modeling methodology, TM,
with the UML. Additionally, we utilized TM as a tool to
further understand UML. We remodeled a sample UML
model in TM, then extracted some UML diagrams from
TM.

Our results indicate that it is difficult to align the two

representations. A TM can replace the activity diagram,
use case, and sequence and class diagrams, considering the
ontological differences such as semantic differences
between object-oriented notation and TM elements (e.g.,
things). However, the issue still needs more investigation,
especially in the context of system behavior. One result
seems to indicate that TM can be used at a higher level of
abstraction and thus provides a conceptual foundation for
UML. This would make some UML diagrams obsolete.
UML can take the idea of building the behavior of the
system for the same program without introducing different
notation. Similarly, in TM, the static diagram is divided
into decompositions to insert time, thus facilitating the
construction of events.

One clear conclusion of this work is that TM
modeling can be used to understand the fundamental ideas
and structures of other modeling techniques. With respect
to UML, several future studies are needed because of its
size and complexity. Future studies should focus on
samples of UML models that have extensive behavioral
representations, especially state diagrams that
complement other diagrams over the same domain.

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.1, January 2021

94

Mentcare system Medical receptionist

 Patient record

 Create

Permission

Transfer Release Authorization Transfer Receive Create

Transfer Release Receive Transfer

 Register patient

View patient info.

Contact patient

Process

Process

Create

Process

Unregister patient

Record data
Create

Transfer Release R
ec

ei
ve

 R
elease Transfer

Process

T
ra

ns
fe

r

Create Transfer Release

Create

Transfer
Record data

Receive

Transfer

Release

Create

Receive

Transfer

Receive

Process

Process

Transfer

Release

Transfer

Transfer

Transfer

Transfer

Release

General patient record
database (a health authority)

Transfer data

Release

Process

Transfer

Transfer

Receive

Receive

Process

Release

Transfer

Receive

Person

Processed Transfer
Mentcare System

Detention
decision

Receive

Transfer

Receive

Processed

Secure location

Receive

Secure location not available

Secure location available

Processed
Dangerous

Not
Dangerous

Admitted
Persons Receive

Next
of
kin

Create

Receive

Transfer Release

Transfer

Release

Transfer

Rights

Release

Transfer

Create

Release

Transfer

Information

Transfer

Transfer

Police
station

Social
care

 Data

File.

E1

Patient

Transfer

Receive

Process
If no record in
the file with

the same key

Constraint

Release

Transfer

T
ra

ns
fe

r

R
el

ea
se

Receive Transfer Transfer Release Transfer

Process

Insert a
new

record

Transfer

Receive

E2 E3

E4

E6

E5

E7

E8

Receive

E9

E10

E11

E12

E14

E13

E16

E15

E17

E19

E18

Fig. 13 TM behavioral model.

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.1, January 2021

95

References

[1] Watson, A.: Visual Modelling: Past, Present and Future.
Object Management Group white paper. Accessed Jan. 14,
2021. http://www.uml.org/Visual_Modeling.pdf

[2] Oliver, R.: Why the Software Industry Has a Love-Hate
Relationship with UML Diagrams. Creately Blog, 19
October 2017. Accessed 12 Jan. 2021.
https://creately.com/blog/diagrams/advantages-and-
disadvantages-of-uml/

 [3] Génova, G., Valiente, M. C., Nubiola, J.: A semiotic
approach to UML models. In: Proc. of the CAiSE ’05
Workshops, vol. 2, pp. 547–557 (2005)

[4] Ahmad, S., Saxena, V.: Design of Formal Air Traffic Control
System Through UML. Ubiquitous Computing and
Communication 3(6), pp. 11–20 (2009, June)

 [5] Steinpichler, D., Kargl, H.: UML—Glossary, Handbook
Project Management with UML and Enterprise Architect for
Version 9, ISBN-13:978-3-9502692-1-5. Releasing
Enterprise Architect 11, Compendium of Enterprise
Architect from SparxSystems, ISBN 978-3-9503784-1-2.
2020 Sparx Systems Ltd und SparxSystems Software GmbH.
https://www.sparxsystems.eu/UML_Basics.pdf

 [6] Fairbanks, G.: Losing the Battle with Complexity. Feb 28,
2016. Accessed Jan. 12, 2021.
https://www.georgefairbanks.com/blog/losing-the-
complexity-battle/

[7] Chren, S., Buhnova, B., Macak, M., Daubner, L., Rossi, B.:
Mistakes in UML Diagrams: Analysis of Student Projects in
a Software Engineering Course. In: Mistakes in UML
Diagrams (2019). doi: 10.1109/ICSE-SEET.2019.00019

[8] Boberic-Krsticev, D., Tesendic, D.: Experience in Teaching
OOAD to Various Students. Informatics in Education 12(1),
pp. 43–58 (2013)

[9] Peleg, M., Dori, D.: The Model Multiplicity Problem:
Experimenting with Real-Time Specification Methods. IEEE
Transactions on Software Engineering 26(8), pp. 742–759
(2000)

[10] Soffer, P., Golany, B., Dori, D., and Wand, Y.: Modeling

Off-The-Shelf Information Systems Requirements: An
Ontological Approach. Requirement Engineering 6(3), pp.
183–199 (2001)

[11] Dori, D.: Model-Based Systems Engineering with OPM and
SysML. Springer, New York (2016)

[12] Dori, D.: Synergistic Model‐Based Systems Engineering
with SysML and OPM. INCOSE International Symposium
(2011). doi.org/10.1002/j.2334-5837.2011.tb01298.x

[13] ISO/PAS (2015) ISO/PAS 19450:2015—Automation
Systems and Integration—Object-Process Methodology.
iso.org.

[14] Al-Fedaghi, S., Al-Fadhli, J.: Thinging-Oriented Modeling
of Unmanned Aerial Vehicles. International Journal of
Advanced Computer Science and Applications 11(5), pp.
610–619 (2020). doi: 10.14569/IJACSA.2020.0110575

[15] Al-Fedaghi, S., Behbehani, B.: How to Document Computer
Networks. Journal of Computer Science 16(6), pp. 423–434
(2020). doi: 10.3844/jcssp.2020.723.434

[16] Al-Fedaghi, S., Al-Qemlas, D.: Modeling Network
Architecture: A Cloud Case Study. International Journal of
Computer Science and Network Security 20(3), pp. 195–209
(2020)

[17] Al-Fedaghi, S., Bayoumi, M.: Modeling Advanced
Persistent Threats: A Case Study of APT38. In: 14th
International Conference for Internet Technology and
Secured Transactions (ICITST) (2019)

[18] Al-Fedaghi, S., Aldamkhi, G.: Conceptual Modeling of an
IP Phone Communication System: A Case Study. In: 18th
Annual Wireless Telecommunications Symposium (WTS)
(2019)

[19] Breu, R., Grosu, R., Huber, F., Rumpe, B., Schwerin, W.:
Systems, Views and Models of UML: The Unified Modeling
Language, Technical Aspects and Applications, pp. 93-109,
Physica Verlag, Heidelberg, 1998

[20] Sommerville, I.: Software Engineering (10th ed.). Pearson
Education Limited, Essex, England (2016). ISBN 10: 1-292-
09613-6

[21] Heidegger, H.: The Thing. In: Poetry, Language, Thought, A.
Hofstadter (Ed.), pp. 161–184. Harper and Row, New York
(1975)

E1 E2 E3 E4 E5

E8 E6
E7

E9 E10

E11

E12

E13 E14

E15

E16 E18

E19

E17

Person in

Not dangerous

 Dangerous

Information

Authentication
to access Register

Unregister

Request patient data

Contact patient

Patient record
database to a

Fig. 14 Behavioral model of the Mentcare system.

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.1, January 2021

96

[22] Bruegge, B.: Dynamic Modeling, slides, Software
Engineering 1 Lecture 10, Applied Software Engineering,
Technische Universitaet Muenchen (2006). Accessed Jan.
10, 2021.

[23] Erickson, J., Siau, K.: Theoretical and Practical Complexity
of Modeling Methods. In: Communication of the ACM, vol.
50(8), pp. 46–51 (2007). doi:10.1145/1278201.1278205

[24] Fakhroutdinov, K.: The Unified Modeling Language site,
Actions, 2009–2020. Accessed Jan. 10, 2021.
https://www.uml-diagrams.org/activity-diagrams-
actions.html

