References
- Guyon, I., Elisseeff,A. "An Introduction to variable and feature selection", Journal of Machine Learning Research, vol.3, pp 1157-1182, (2003).
- Aik ,L.E., Kiang ,L.C., Mohamed ,Z.B., Hong,T.W., "A review on the multivariate statistical methods for dimensional reduction studies", In AIP Conference Proceedings, Perlis, Malaysia, (2009).
- Morris,K. , McNicholas,P.D., "Clustering, classification, discriminant analysis, and dimension reduction via generalized hyperbolic mixtures". Computational Statistics and Data Analysis, Vol. 97, pp. 133-150, (2016). https://doi.org/10.1016/j.csda.2015.10.008
- Lin,Y.W.,Deng,B., Xu ,Q., Yun,Y.H., Liang,Y.Z., "The equivalence of partial least squares and principal component regression in the sufficient dimension reduction framework. Chemometrics and Intelligent Laboratory Systems, Vol. 150, pp. 58-64, (2016). https://doi.org/10.1016/j.chemolab.2015.11.003
- Mallick, K., Bhattacharyya, S. " Uncorrelated Local Maximum Margin Criterion: An Efficient Dimensionality reduction Method for Text Classification", Procedia Technology, Vol.4, pp. 370 - 374, (2012). https://doi.org/10.1016/j.protcy.2012.05.057
- Jingjie,Y., Wang,X., GU,W. "Speech Emotion Recognition Based on Sparse Representation", Archives of Acoustics, Vol.38, No. 4, pp. 465-470, (2013). https://doi.org/10.2478/aoa-2013-0055
- Fletcher, S., Islam, Md..,"Decision Tree Classification with Differential Privacy: A Survey", ACM computing surveys, Vol 52( 4), (2019).
- Chandrashekar,G., Sahin,F., "A survey on feature selection Methods", Computer and Electrical Engineering, Elsevier, vol.40, pp 16- 28,( 2014). https://doi.org/10.1016/j.compeleceng.2013.11.024
- Hancer, E. "New filter approaches for feature selection using differential evolution and fuzzy rough set theory", Neural Comput & Applic, vol.32, pp.2929-2944 (2020). https://doi.org/10.1007/s00521-020-04744-7
- Abramovich,H., "The Vibration Correlation Technique - A reliable nondestructive method to predict buckling loads of thin walled structures", Faculty of Aerospace Engineering, Technion, I.I.T., Vol. 25, (2020).
- Reunanen,J., "Overfiltering in Making comparisons between variable selection methods, Journal of Machine Learning Research, vol.3, pp. 1371-1382, 2003.
- Fayyad,V., Irani,K.B., "Multi interval discretization of continuous valued attributes for classification learning", In Proc. of 13th International Conference on AI, Morgan Kuffman, Washington, D.C, San Francisco, USA, pp 1022-1027, (1993).
- R.avi,K., John,G.H., "Wrappers for feature based selection" Artificial Intelligence, vol.97, pp. 273-324, (1997). https://doi.org/10.1016/S0004-3702(97)00043-X
- Tawhid, M.A., Ibrahim, A.M., "Feature selection based on rough set approach, wrapper approach, and binary whale optimization algorithm", International journal of machine learning and cybernetics, Vol. 11(3), (2020).
- Pudil, P., Novovicova,J., Kitler,J., "Floating search methods in feature selection", Pattern Recognition Letters, Elsevier, vol.15, pp.1119-1125, (1994). https://doi.org/10.1016/0167-8655(94)90127-9
- Blessie,E.C, Keyan,E.K., "Sigmas: A Feature Selection Algorithm using correlation based Methods", Journal of Algorithm and Computational Technology, vol.6, pp 385-394,( 2012). https://doi.org/10.1260/1748-3018.6.3.385