Acknowledgement
At the location of the Unite de Formation et de Recherche des Mathematiques et Informatique (UFR-MI) of the Universite Felix Houphouet-Boigny (UFHB) and the Laboratoire de Recherche en Informatique et Telecommunication (LARIT).
References
- J. Delporte, « Factorisation matricielle, application a la recommandation personnalisee de preferences », thesis, Rouen, INSA, 2014.
- S. M. Nafea, F. Siewe, et Y. He, « A Novel Algorithm for Course Learning Object Recommendation Based on Student Learning Styles », in 2019 International Conference on Innovative Trends in Computer Engineering (ITCE), fevr. 2019, p. 192-201, doi: 10.1109/ITCE.2019.8646355.
- J. Lu, D. Wu, M. Mao, W. Wang, et G. Zhang, « Recommender system application developments: A survey », Decision Support Systems, vol. 74, p. 12-32, juin 2015, doi: 10.1016/j.dss.2015.03.008.
- J. K. Tarus, Z. Niu, et D. Kalui, « A hybrid recommender system for e-learning based on context awareness and sequential pattern mining », Soft Comput, vol. 22, no 8, p. 2449-2461, avr. 2018, doi: 10.1007/s00500-017-2720-6.
- B. Alhijawi, G. Al-Naymat, N. Obeid, et A. Awajan, « Novel predictive model to improve the accuracy of collaborative filtering recommender systems », Information Systems, vol. 96, p. 101670, fevr. 2021, doi: 10.1016/j.is.2020.101670.
- D. D. A. S. L. Koffi, T. N'takpe, A. Adje, et S. Oumtanaga, « A New Approach to Predicting Learner Performance with Reduced Forgetting », International Journal of Advanced Computer Science and Applications (IJACSA), vol. 11, no 5, Art. no 5, 41/30 2020, doi: 10.14569/IJACSA.2020.0110532.
- S. B. Aher et L. M. R. J. Lobo, « Combination of machine learning algorithms for recommendation of courses in E-Learning System based on historical data », Knowledge-Based Systems, vol. 51, p. 1-14, oct. 2013, doi: 10.1016/j.knosys.2013.04.015.
- S. B. Aher, « EM&AA: An Algorithm for Predicting the Course Selection by Student in e-Learning Using Data Mining Techniques », J. Inst. Eng. India Ser. B, vol. 95, no 1, p. 43-54, janv. 2014, doi: 10.1007/s40031-014-0074-3.
- H. N. T. Diem, « Personalized Course Recommendation in Formal Learning Based on Logistic Regression », 2015, doi: 10.17148/IJARCCE.2015.410119.
- A. Al-Badarenah et J. Alsakran, « An Automated Recommender System for Course Selection », ijacsa, vol. 7, no 3, 2016, doi: 10.14569/IJACSA.2016.070323.
- H. Imran, M. Belghis-Zadeh, T.-W. Chang, Kinshuk, et S. Graf, « PLORS: a personalized learning object recommender system », Vietnam J Comput Sci, vol. 3, no 1, p. 3-13, fevr. 2016, doi: 10.1007/s40595-015-0049-6.
- J. Xiao, M. Wang, B. Jiang, et J. Li, « A personalized recommendation system with combinational algorithm for online learning », J Ambient Intell Human Comput, vol. 9, no 3, p. 667-677, juin 2018, doi: 10.1007/s12652-017-0466-8.
- J. Shu, X. Shen, H. Liu, B. Yi, et Z. Zhang, « A content-based recommendation algorithm for learning resources », Multimedia Systems, vol. 24, no 2, p. 163-173, mars 2018, doi: 10.1007/s00530-017-0539-8.
- X. Liu, « A collaborative filtering recommendation algorithm based on the influence sets of e-learning group's behavior », Cluster Comput, vol. 22, no 2, p. 2823-2833, mars 2019, doi: 10.1007/s10586-017-1560-6.
- O. Bourkoukou et O. Achbarou, « Weighting based approach for learning resources recommendations », JOIV : International Journal on Informatics Visualization, vol. 2, no 3, Art. no 3, avr. 2018, doi: 10.30630/joiv.2.3.124.
- O. Bourkoukou et E. E. Bachari, « Toward a Hybrid Recommender System for E-learning Personnalization Based on Data Mining Techniques », JOIV : International Journal on Informatics Visualization, vol. 2, no 4, Art. no 4, aout 2018, doi: 10.30630/joiv.2.4.158.
- S. Asadi, S. M. B. Jafari, et Z. Shokrollahi, « Developing a Course Recommender by Combining Clustering and Fuzzy Association Rules », Journal of AI and Data Mining, vol. 7, no 2, p. 249-262, avr. 2019, doi: 10.22044/jadm.2018.6260.1739.
- H. Zhang, T. Huang, Z. Lv, S. Liu, et H. Yang, « MOOCRC: A Highly Accurate Resource Recommendation Model for Use in MOOC Environments », Mobile Netw Appl, vol. 24, no 1, p. 34-46, fevr. 2019, doi: 10.1007/s11036-018-1131-y.
- C. K. Pereira, F. Campos, V. Stroele, J. M. N. David, et R. Braga, « BROAD-RSI - educational recommender system using social networks interactions and linked data », J Internet Serv Appl, vol. 9, no 1, p. 7, mars 2018, doi: 10.1186/s13174-018-0076-5.
- Z. Gulzar, A. A. Leema, et G. Deepak, « PCRS: Personalized Course Recommender System Based on Hybrid Approach », Procedia Computer Science, vol. 125, p. 518-524, janv. 2018, doi: 10.1016/j.procs.2017.12.067.
- S. Wan et Z. Niu, « A Hybrid E-Learning Recommendation Approach Based on Learners' Influence Propagation », IEEE Transactions on Knowledge and Data Engineering, vol. 32, no 5, p. 827-840, mai 2020, doi: 10.1109/TKDE.2019.2895033.
- S. M. Nafea, F. Siewe, et Y. He, « On Recommendation of Learning Objects Using Felder-Silverman Learning Style Model », IEEE Access, vol. 7, p. 163034-163048, 2019, doi: 10.1109/ACCESS.2019.2935417.
- Y. LeCun, Y. Bengio, et G. Hinton, « Deep learning », Nature, vol. 521, no 7553, Art. no 7553, mai 2015, doi: 10.1038/nature14539.
- N. Rusk, « Deep learning », Nature Methods, vol. 13, no 1, Art. no 1, janv. 2016, doi: 10.1038/nmeth.3707.
- L. Deng et D. Yu, « Deep Learning: Methods and Applications », Found. Trends Signal Process., vol. 7, no 3-4, p. 197-387, juin 2014, doi: 10.1561/2000000039.
- H. Jiang, « Non-Asymptotic Uniform Rates of Consistency for k-NN Regression », AAAI, vol. 33, no 01, Art. no 01, juill. 2019, doi: 10.1609/aaai.v33i01.33013999.
- D. Kurniadi, E. Abdurachman, H. L. H. S. Warnars, et W. Suparta, « The prediction of scholarship recipients in higher education using k-Nearest neighbor algorithm », IOP Conf. Ser.: Mater. Sci. Eng., vol. 434, p. 012039, dec. 2018, doi: 10.1088/1757-899X/434/1/012039.
- A. Swetapadma et A. Yadav, « A novel single-ended fault location scheme for parallel transmission lines using k-nearest neighbor algorithm », Computers & Electrical Engineering, vol. 69, p. 41-53, juill. 2018, doi: 10.1016/j.compeleceng.2018.05.024.
- N. Maleki, Y. Zeinali, et S. T. A. Niaki, « A k-NN method for lung cancer prognosis with the use of a genetic algorithm for feature selection », Expert Systems with Applications, vol. 164, p. 113981, fevr. 2021, doi: 10.1016/j.eswa.2020.113981.
- F. Wang, Z. Liu, et C. Wang, « An improved kNN text classification method », International Journal of Computational Science and Engineering, vol. 20, no 3, p. 397-403, janv. 2019, doi: 10.1504/IJCSE.2019.103944.