DOI QR코드

DOI QR Code

Drug-Drug Interaction Prediction Using Krill Herd Algorithm Based on Deep Learning Method

  • Received : 2021.06.05
  • Published : 2021.06.30

Abstract

Parallel administration of numerous drugs increases Drug-Drug Interaction (DDI) because one drug might affect the activity of other drugs. DDI causes negative or positive impacts on therapeutic output. So there is a need to discover DDI to enhance the safety of consuming drugs. Though there are several DDI system exist to predict an interaction but nowadays it becomes impossible to maintain with a large number of biomedical texts which is getting increased rapidly. Mostly the existing DDI system address classification issues, and especially rely on handcrafted features, and some features which are based on particular domain tools. The objective of this paper to predict DDI in a way to avoid adverse effects caused by the consumed drugs, to predict similarities among the drug, Drug pair similarity calculation is performed. The best optimal weight is obtained with the support of KHA. LSTM function with weight obtained from KHA and makes bets prediction of DDI. Our methodology depends on (LSTM-KHA) for the detection of DDI. Similarities among the drugs are measured with the help of drug pair similarity calculation. KHA is used to find the best optimal weight which is used by LSTM to predict DDI. The experimental result was conducted on three kinds of dataset DS1 (CYP), DS2 (NCYP), and DS3 taken from the DrugBank database. To evaluate the performance of proposed work in terms of performance metrics like accuracy, recall, precision, F-measures, AUPR, AUC, and AUROC. Experimental results express that the proposed method outperforms other existing methods for predicting DDI. LSTMKHA produces reasonable performance metrics when compared to the existing DDI prediction model.

Keywords

References

  1. Takeda, T., Hao, M., Cheng, T., Bryant, S. H., & Wang, Y. (2017). Predicting drug-drug interactions through drug structural similarities and interaction networks incorporating pharmacokinetics and pharmacodynamics knowledge. Journal of cheminformatics, 9(1), 16. https://doi.org/10.1186/s13321-017-0200-8
  2. Wang, M., Chen, Y., Qian, B., Liu, J., Wang, S., Long, G., & Wang, F. (2017). Predicting Rich Drug-Drug Interactions via Biomedical Knowledge Graphs and Text Jointly Embedding. arXiv preprint arXiv:1712.08875.
  3. Wishart, D. S., Feunang, Y. D., Guo, A. C., Lo, E. J., Marcu, A., Grant, J. R., . . . Sayeeda, Z. (2018). DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic acids research, 46(D1), D1074-D1082. https://doi.org/10.1093/nar/gkx1037
  4. Lamurias, A., Sousa, D., Clarke, L. A., & Couto, F. M. (2019). BOLSTM: classifying relations via long short-term memory networks along biomedical ontologies. BMC bioinformatics, 20(1), 1-12. https://doi.org/10.1186/s12859-018-2565-8
  5. Deng, Y., Xu, X., Qiu, Y., Xia, J., Zhang, W., & Liu, S. (2020). A multimodal deep learning framework for predicting drug-drug interaction events. Bioinformatics.
  6. Lamurias, A., & Couto, F. M. (2019). Text mining for bioinformatics using biomedical literature. Encyclopedia of bioinformatics and computational biology, 1, 602-611. https://doi.org/10.1016/B978-0-12-809633-8.20409-3
  7. Jan, B., Farman, H., Khan, M., Imran, M., Islam, I. U., Ahmad, A., Jeon, G. (2019). Deep learning in big data Analytics: A comparative study. Computers & Electrical Engineering, 75, 275-287. https://doi.org/10.1016/j.compeleceng.2017.12.009
  8. Liu, S., Chen, K., Chen, Q., & Tang, B. (2016). Dependency-based convolutional neural network for drug-drug interaction extraction. Paper presented at the 2016 IEEE international conference on bioinformatics and biomedicine (BIBM).
  9. Yi, Z., Li, S., Yu, J., Tan, Y., Wu, Q., Yuan, H., & Wang, T. (2017). Drug-drug interaction extraction via recurrent neural network with multiple attention layers. Paper presented at the International Conference on Advanced Data Mining and Applications.
  10. Wang, G.-G., Deb, S., Gandomi, A. H., & Alavi, A. H. (2016). Opposition-based krill herd algorithm with Cauchy mutation and position clamping. Neurocomputing, 177, 147-157. https://doi.org/10.1016/j.neucom.2015.11.018
  11. Ferdousi,R, Safda,i, R, Omidi, Y. (2017) Computational prediction of drug-drug interactions drugs functional similarities, Journal of Biomedical Informatics,V.70, 54- 64. https://doi.org/10.1016/j.jbi.2017.04.021
  12. Sahu, S. K., & Anand, A. (2018). Drug-drug interaction extraction from biomedical texts using long short-term memory network. Journal of biomedical informatics, 86, 15-24. https://doi.org/10.1016/j.jbi.2018.08.005
  13. Guo, Y., Dai, X., Jermsittiparsert, K., & Razmjooy, N. (2020). An optimal configuration for a battery and PEM fuel cell-based hybrid energy system using developed Krill herd optimization algorithm for locomotive application. Energy Reports, 6, 885-894.
  14. Rohani, N., Eslahchi, C., & Katanforoush, A. (2020). ISCMF: Integrated similarity-constrained matrix factorization for drug-drug interaction prediction. Network Modeling Analysis in Health Informatics and Bioinformatics, 9(1), 1-8. https://doi.org/10.1007/s13721-019-0207-3
  15. Park, C., Park, J., & Park, S. (2020). AGCN: Attention-based Graph Convolutional Networks for Drug-Drug Interaction Extraction. Expert Systems with Applications, 113538. https://doi.org/10.1016/j.eswa.2020.113538
  16. Xu, B., Shi, X., Zhao, Z., & Zheng, W. (2018). Leveraging biomedical resources in bi-lstm for drug-drug interaction extraction. IEEE Access, 6, 33432-33439. https://doi.org/10.1109/ACCESS.2018.2845840
  17. Agrawal, Pandit, & Dubey (2016), Improved Krill Herd Algorithm with Neighborhood Distance Concept for Optimization, International Journal of Intelligent Systems and Applications, , PP.34-50.
  18. Rezaul Karim, M., Cochez, M., Bosco Jares, J., Uddin, M., Beyan, O., & Decker, S. (2019). Drug-Drug Interaction Prediction Based on Knowledge Graph Embeddings and Convolutional-LSTM Network. arXiv preprint arXiv:1908.01288.
  19. Abdel-Basset, M., Wang, G.-G., Sangaiah, A. K., & Rushdy, E. (2019). Krill herd algorithm based on cuckoo search for solving engineering optimization problems. Multimedia Tools and Applications, 78(4), 3861-3884. https://doi.org/10.1007/s11042-017-4803-x
  20. Li, L., Sun, L., Xue, Y., Li, S., Huang, X. and Mansour, R.F., 2021. Fuzzy Multilevel Image Thresholding Based on Improved Coyote Optimization Algorithm. IEEE Access, 9, pp.33595-33607. https://doi.org/10.1109/ACCESS.2021.3060749
  21. Shen, Y., Yuan, K., Yang, M., Tang, B., Li, Y., Du, N., & Lei, K. (2019). KMR: knowledge-oriented medicine representation learning for drug-drug interaction and similarity computation. Journal of cheminformatics, 11(1), 22. https://doi.org/10.1186/s13321-019-0342-y
  22. Yoshida, K., Zhao, P., Zhang, L., Abernethy, D. R., Rekic, D., Reynolds, K. S., . . . Huang, S.-M. (2017). In Vitro-In Vivo Extrapolation of Metabolism-and Transporter-Mediated Drug-Drug Interactions-Overview of Basic Prediction Methods. Journal of pharmaceutical sciences, 106(9), 2209-2213. https://doi.org/10.1016/j.xphs.2017.04.045
  23. Zhang, W., Chen, Y., Liu, F., Luo, F., Tian, G., & Li, X. (2017). Predicting potential drug-drug interactions by integrating chemical, biological, phenotypic and network data. BMC bioinformatics, 18(1), 18. https://doi.org/10.1186/s12859-016-1415-9
  24. Zhang, W., Jing, K., Huang, F., Chen, Y., Li, B., Li, J., & Gong, J. (2019). SFLLN: a sparse feature learning ensemble method with linear neighborhood regularization for predicting drug-drug interactions. Information Sciences, 497, 189-201. https://doi.org/10.1016/j.ins.2019.05.017
  25. Zhou, D., Miao, L., & He, Y. (2018). Position-aware deep multi-task learning for drug-drug interaction extraction. Artificial intelligence in medicine, 87, 1-8. https://doi.org/10.1016/j.artmed.2018.03.001
  26. Lee, Park & Ahn, (2019), Novel deep learning model for more accurate prediction of drug-drug Interaction effects, BMC Bioinformatics, https://doi.org/10.1186/s12859-019-3013-0.
  27. Gottlieb, A., Stein, G. Y., Oron, Y., Ruppin, E., & Sharan, R. (2012). INDI: a computational framework for inferring drug interactions and their associated recommendations. Molecular systems biology, 8(1).
  28. Shtar, Rokach & Shapira (2019), Detecting drug-drug interactions using artificial neural networks and classic graph similarity measures, PLoS ONE 14(8): e0219796. https://doi.org/10.1371/journal.pone.0219796.
  29. Abualigah, L. M., Khader, A. T., Hanandeh, E. S., & Gandomi, A. H. (2017). A novel hybridization strategy for krill herd algorithm applied to clustering techniques. Applied Soft Computing, 60, 423-435. https://doi.org/10.1016/j.asoc.2017.06.059
  30. Bolaji, A. L. a., Al-Betar, M. A., Awadallah, M. A., Khader, A. T., & Abualigah, L. M. (2016). A comprehensive review: Krill Herd algorithm (KH) and its applications. Applied Soft Computing, 49, 437-446. https://doi.org/10.1016/j.asoc.2016.08.041
  31. Feng, Y., Wang, G.-G., Deb, S., Lu, M., & Zhao, X.-J. (2017). Solving 0-1 knapsack problem by a novel binary monarch butterfly optimization. Neural Computing and Applications, 28(7), 1619-1634. https://doi.org/10.1007/s00521-015-2135-1
  32. Wang, G.-G., Deb, S., Gao, X.-Z., & Coelho, L. D. S. (2016). A new metaheuristic optimisation algorithm motivated by elephant herding behaviour. International Journal of Bio-Inspired Computation, 8(6), 394-409. https://doi.org/10.1504/IJBIC.2016.081335
  33. Wang, G.-G., Gandomi, A. H., Alavi, A. H., & Gong, D. (2019). A comprehensive review of krill herd algorithm: variants, hybrids and applications. Artificial Intelligence Review, 51(1), 119-148. https://doi.org/10.1007/s10462-017-9559-1
  34. Lipton, Z. C., Berkowitz, J., & Elkan, C. (2015). A critical review of recurrent neural networks for sequence learning. arXiv preprint arXiv:1506.00019.
  35. Rohani, N., & Eslahchi, C. (2019). Drug-Drug interaction predicting by neural network Using integrated Similarity. Scientific reports, 9(1), 1-11. https://doi.org/10.1038/s41598-018-37186-2