
 IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.2, February 2021

130

Manuscript received February 5, 2021
Manuscript revised February 20, 2021

https://doi.org/10.22937/IJCSNS.2021.21.2.15

Diagrammatic Formalism for Complex Systems:
More than One Way to Eventize a Railcar System

Sabah Al-Fedaghi

Computer Engineering Department, Kuwait University, Kuwait

Summary
This paper is in the intersection of software engineering and
system engineering, two intimately intertwined disciplines. A
dominating theme in this paper is the integral conceptualization
of systems at large, as well as an underlying concern with
software systems. In the software development life cycle,
challenges still exist in translating requirements into a design
artifact and then into an implementation (e.g., coding), then
validating the results. From our perspective, software engineering
requires an integrating paradigm toward a unified modeling
orientation. Many methodologies, languages, and tools exist for
facilitating system development processes. This paper is a
venture into project development. To focus the materials, we
concentrate on Harel’s novel (and classic) development
environment, which integrates a scenario-based engineering
object orientation and statecharts through developing a railcar
system. The railcar system is used as a detailed sample of
translating requirements into a design artifact and then into an
implementation, then validating the result. The project is re-cased
as a single integrated modeling endeavor to be contrasted with
the scenario and statecharts’ development. The result of this
scheme is an enriched understanding through experimenting with
and contrasting various development methods of software
projects.
Key words:
Conceptual modeling; system development process; static model;
dynamic model; behavioral model

1. Introduction

This paper is in the intersection of software engineering and
system engineering, two intimately intertwined disciplines [1]. A
dominating theme in the research work is the integral
conceptualization of systems. To understand such integration,
consider Buede and Miller’s [2] definition of a system as “a
collection of hardware, software, people, facilities, and
procedures organized to accomplish some common objectives.”
This same definition is used in the adopted model in this paper,
the so called thinging machine (TM). An abstract thinging
machine is constructed from an intertwining net of hardware,
software, person, facility, and procedure thinging submachines
organized to accomplish common objectives. We will
demonstrate the assembly of such machines with the case study
of a railcar system [3]. The main component of this system is
software. Thus, our underlying concern is with the development
of software systems. In software development life cycles,
challenges still exist in translating the requirement layer into a
design layer and then into an implementation code layer, then
validating the correctness of the results [3].

1.1 Difficulties in Software and System Engineering

We view difficulties with software engineering as a special case
of difficulties in system engineering. According to Yang [1], the
major reason for system failure costs is a lack of adequate
information exchange and communication within projects [4], as
a quarter of these failures arise during a system’s design phase.
This can be traced to a lack of efficient collaborations between
parties involved in the system’s life cycle processes. According
to Hallberg et al. [5], no “unambiguous” and comprehensive use
of concepts exists in the systems development field [1]. This
causes misunderstandings, misinterpretations, and irritations
when one is developing systems, which inhibit the emerging
system’s functioning and usability [1]. Additionally, according to
Ernadot [6], present system engineering standards remain
document centric, making their model-based transition very
difficult. The prerequisite of model-based engineering is to
achieve a logically rigorous specification of all processes (i.e.,
what things/objects exist in the ontology, what events are, and
how they evolve). Yang et al. [7-8] observe that current system
development standards fail to handle such issues explicitly
because their textual descriptions often have terminological
ambiguity and relational inconsistencies.

1.2 Needs

The international standard of ISO/IEC/IEEE 15288: 2015,
Systems and Software Engineering – System Life Cycle
Processes provides generic top-level process descriptions to
support systems engineering [8]. According to Yang, Cormican,
and Yu [8], due to dependence on an input–process–output (IPO)
diagram, the processes defined in the standard lack a whole and
systemic blueprint. They require the tracing of each input or
output so that each can be specified and detailed. No model is
provided to define each process, classify elements, clarify the
relationships, and unify the terminology.

From our perspective, system and software engineering require
an integrating paradigm that shifts their direction to focusing on
unifying notions, instead of divergence and variation. The basic
premise of this paper is that a crucial instrument that assists in
the software development process is a single integrated
conceptual model that stakeholders from various professional
backgrounds understand and discuss, and that can be tested and
validated, either manually or automatically, at various layers [9-
10].

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.2, February 2021

131

1.3 Overview of the Paper

In the next section, we relate the paper to the general topic
of system development. Of special importance in this
context is modeling compositions using diagrammatic
representations, which can increase understanding and
motivate discussions about interactions before systems are
effectively designed. This leads to “possibly reducing risks
and costs associated to system misbehaviors discovered in
advanced stages of the development process” [11]. Clearly,
this subject is very broad; thus, we focus on a single
detailed system: a railcar system. Section 3 reviews the
basic TM modeling. Section 4 provides a new contribution
in the form of a TM example, which includes a
comparison with known state machines. In particular, the
example demonstrates the explicit representation of events
and behavior in TM modeling. The following sections
include detailed specifications for recasting the selected
railcar system using TM modeling. The hope is that this
model project demonstrates the viability of TM modeling
for system development.

2. Related Works

Many methodologies, languages, and tools exist for
facilitating the software development process. To produce
concrete results that disclose the features of the
aforementioned TM model, we recast a fully detailed
system scheme from Harel et al.’s [3] project, which
involves a novel development environment that integrates
a scenario-based engineering object orientation and
statechart formalism for system development [10]. Their
integration enables semantically rich execution as well as
the sharing of and interfacing with objects and events. It
can be used to create and enhance testable models from the
early stage, which involves requirements elicitation, to the
detailed design stage [3]. According to Harel et al. [3],
scenario-based specifications are characterized by their
inter-object nature, and a scenario can contain a flow of
events involving any number of objects, both internal and
external, including subsystems and human users.

Our perspective is different from Harel et al.’s approach
[3] and other similar methodologies and modeling
techniques (e.g., UML and SysML). These methodologies
achieve success in modeling projects based on the
multiplicity of their specifications (e.g., statecharts for
objects) and the variation of their representations
(heterogeneous types of UML diagrammatic notions).
However, they fail to furnish a nucleus around which
various phases of the engineering process evolve.
However significant the need is for different views of the
system, a basic need still exists for an underlying model

that links views and events together in a uniform,
vertically multi-level conceptual structure.

3. Thinging Machines

The TM model articulates the ontology of the world in
terms of an entity that is simultaneously a thing and a
machine, called a thimac [12-14]. A thimac is like a
double-sided coin. One side of the coin exhibits the
characterizations that the thimac assumes; on the other
side, operational processes emerge, which provide a
dynamism that goes beyond structures or things to
embrace other things in the thimac. A thimac preserves
individuality and simultaneously is understood to be a
cluster of regions (bundles, to be defined later) from which
dynamics originate, in the form of events (to be defined
later) – see Fig. 1.

A thing is subjected to doing (e.g., a tree is a thing that is
planted, cut, etc.), and a machine does (e.g., a tree is a
machine that absorbs carbon dioxide and uses sunlight to
make oxygen). The tree thing and the tree machine are two
faces of the tree thimac. A thing is viewed based on
Heidegger’s [15] notion of thinging, in which a thing is a
flux of five static generic actions that, with time, transform
into atomic event constellations within specified
acceptable behaviors (see Fig. 2).

The simplest type of machine is shown in Fig. 3. The
actions in the machine (also called stages) are as follows:
Arrive: A thing moves to another machine.
Accept: A thing enters a machine. For simplification, we

assume that all arriving things are accepted;
hence, we can combine the thing’s arrival and
acceptance into the receive stage.

Fig. 1 Illustration of the thimac as a thing/machine (left) and its
dynamics, which are specified by decomposing the machine into

regions of events (right).

Thimac
(Abstract)
Machine

Regions of events

Thing,
e.g.,
railcar
system

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.2, February 2021

132

Release: A thing is marked as ready for transfer outside

of the machine (e.g., passengers in an airport
wait to board their plane following passport
clearance).

Process: A thing is changed in form, but no new thing
results.

Create: A new thing is born in a machine.
Transfer: A thing is input into or output from a machine.

Additionally, the TM model includes storage and
triggering (denoted by a dashed arrow in this study’s
figures), which initiates a flow of things from one machine
to another. Multiple machines can interact with each other
through the movement of things or by triggering stages.
Triggering is a transformation from one series of
movements to another (e.g., electricity triggers cold air).

4. TM Modeling Example

The purpose of this section is to demonstrate TM
modeling in contrast to other modeling—in this case, for
describing a state machine. Specifically, we show that
state diagrams model static and not behavioral descriptions.

4.1 General Description of TM Modeling

TM modeling produces three levels of description: static,
dynamic, and behavioral models. A static description
provides logical and complete descriptions of machines
and inter-machines in the modeled system. The description
constructs the whole model as a machine. Each machine in
the model still has its own machinery, as a machine and as
part of the model as a machine. The whole assembly is a
TM; for example, the whole model is created, processed,
released, transferred, and/or received, and every
submachine creates, processes, releases, transfers, and/or
receives things (machines). The “or” indicates that some
machines may not consist of all five actions. Additionally,
each machine in the assembly has links to other outside
machines. For simplicity, we will not include “create” in
every machine and assume that the mere presence of the
machine implies that it is created. Additionally, we will
not surround each machine or submachine by a rectangle,

especially when the (flow) thing inside the machine is
coming from another machine.

At the static level, only structurality exists. In addition, no
change occurs. The meaning of staticity can be illustrated
as shown in Fig. 4 (left). It can be said that the movement
of the ball occurs where it changes locations. However,
time is not incorporated into the static model, in the sense
that time does not appear in the picture. The illusion of
time as a spatial quantity is inevitable as soon as time is
spatialized [16]. In such a picture, the ball may be
specified as appearing first in the middle, then at the right
end, and finally at the left end. That is, no time
specification exists for which position follows another
position. The representation specifies logical space
relationships, not temporal ones. If time is involved, we
would have a single ball in Fig. 4 instead of six balls. Thus,
the static model can include contradictions as shown in Fig.
4 (right), in which traffic in two directions is permitted on
a one-lane street. In the static model, such a description is
permitted because time is not included in such a
description. When time is involved, traffic is permitted in
one direction, say at night, and it is permitted in the
opposite direction during the day.

A static model is a single picture of all relevant machines.
As a thing, it may be susceptible to dynamics. In the model,
dynamics refers to an assembly of machines. For example,
John is applauding; his hands are clapping each other.
These dynamics are capabilities that are not in the static
model because they involve portions of the model. To
inject such dynamics, we must divide the description into
decompositions that change within the static model.

Accordingly, we must decompose the static model into
regions that may make changes. The identification of these
regions produces the dynamic model. To realize these
potential changes, we must inject time into these regions to
create events. An event is a static region (the location of
the change) and a time submachine. Finally, the events
gather into a chronological order to form the behavioral
model.

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.2, February 2021

133

4.1 Example of TM Modeling

According to Excel software [17], tables are an effective
way of expressing information about states and events in
modeling. This is illustrated in the state transition table
shown in Fig. 5. Fig. 6 shows the corresponding TM
models for the given states and actions. Note that events
are not included because they are second-level notions and
will be included when the TM behavioral model is
developed. In Fig. 6, first, money is seen entering the
machine (to the right of the thick vertical line, circle 1).

This makes the machine receive the money (2) and process
it (3). In this process, verification is performed as follows:

- If it fails (4), a rejection—for example, a

message—is sent out (5).
- If it passes, the equivalent coins are released (7).
- The coin storage is processed (8) to determine

whether sufficient funds exist.

Accordingly, if sufficient funds are available, no further
action is taken, and the machine waits for the next
detection of input money (9).

- If insufficient funds (10) are available, the “out of
money” light is turned ON (11).

- If additional funds are provided (12), the “out of
money” light is turned OFF (13).

One clear observation from Fig. 6 is that it does not
include anything about time. To illustrate this, consider the
definition of time in a TM for the event money refill as
shown in Fig. 7. Note that the event money refill is
different from the series (order) of actions for money refill
as will be discussed later.

An event is a machine including at least three
submachines: the region (of the event), time, and the event
itself. Thus, the static description in Fig. 6 can be
decomposed into regions of events as shown in Fig. 8.
There, the static TM model is decomposed into the
following.

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.2, February 2021

134

A: Detection of money
B: Processing of the money
C: Verification is failed, and a rejection is sent.
D: Verification is passed, and coins are dispensed.
E: Coins are processed
F: Coins are insufficient, and the out-of-money light is
turned ON.
G: Money is sufficient.
H: Money is refilled.
I: The out-of-money light is turned OFF.

In contrast to state machines, TM modeling explicitly
introduces time to construct events by using these
decompositions as regions of events. Accordingly, we
represent the event in a region by E (for event), with the
region’s name being a subscript. Thus, we have the events
of EA, EB, EC, ED, EE, EF, EG, EH, and EI. Fig. 9 shows the
chronology of these events that form the machine’s
behavior.

Examining the state machine represented by the table in
Fig. 5, we see that states are just regions or locations in the
TM static representation. The state verify dollar is a region
in the static description where a potential event exists.
Verify dollar is a space without time embedded in it. Thus,
if we have the sequence of states (verify dollar, dispensing
coins), then this sequence does not reflect a behavior
because the sequence of verify dollar on Feb. 2000,
dispense coins on Jan. 2021 is a correct sequence of states
but is not acceptable behavior.

To reach behavior, we must add time to states.
Accordingly, states are static and are not behavioral
descriptions. This observation is important in system
development based on states and statechart diagrams.

5. The Railcar System

Several papers have discussed a railcar system [3, 18-21].
The system involves six terminals located on a cyclic path.
Each pair of adjacent terminals is connected by two rail
tracks, one for clockwise and one for counterclockwise
travel. Several railcars transport passengers between
terminals. A control center receives, processes, and sends
data to various components (see the partial picture in Fig.
10). Each terminal has a parking area containing four
parallel platforms.

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.2, February 2021

135

According to Harel et al. [3], statecharts [22] augment
conventional state machines with notations and semantic
definitions for the concurrency and hierarchy necessary to
specify and then directly execute complex behavior. An
object-oriented version of the statechart language has
become the basis for the state-based language of the UML.
Additionally, statecharts have become the visual
formalism of choice for intra-object behavior specification
[3]. This intra-object behavior is typically specified in the
UML sequence diagrams; however, “the translation from
an inter-object, scenario-based specification to
implementation is a central issue in software engineering,
and constitutes a substantial part of many software
development efforts” [3]. A main objective of the railcar
system example is to “present an overall development
philosophy, which supports a natural integration of inter-
object and intra-object methodologies” [3]. Fig. 11 shows
a sample diagram that Harel et al. [3] uses in modeling the
railcar system.

The purpose of our showing portions of this diagram is to
contrast them later with what we called the integral
conceptualization of systems in the introduction of this
paper, as TM will use a single diagram with multilevel
semantics (e.g., static and behavioral).

In addition to the different modeling styles, the points to
watch in developing the railcar system are as follows:
 Modeling projects based on a multiplicity of

specifications (e.g., statecharts for objects) and
variations of representations (heterogeneous types
of UML diagrammatic notions)

 Modeling projects based on a nucleus around which
various phases of the engineering process evolve,
with an underlying model linking various views and
events together into a uniform, vertically multi-level
conceptual structure.

Additionally, Harel et al. [3] do not provide a formal
definition of an event, even though the word is repeated
more than 50 times in the article.

Apparently, they took the notion of events from UML.
However, they mention, “One of the main technical issues
[…] was what mechanism to use for interobject interaction.
[…] we adopted the two mechanisms: An object can
generate an event, [and] an object can invoke an operation
of another object” [3]. Here, the central issue is the claim
of having rigorously defined semantics of precise model
behavior over time. Events in such an orientation are even
more important of a notion than that of objects.

To emphasize the issue under discussion, here, we
reexamine what an event is in TM. Consider a
phenomenon such as depressing a button, denoted as “a.”
This is called an event (see Harel [19]). In TM, a is a type
of (series) action. It involves the flow of a hand to process
the button. This description is just a specification, just as
how x + y is a description and not something happens in
reality. Similarly, depressing a button is not an event but
rather a type of event. Hence, a state machines (and
consequently statecharts) cannot express events, let alone
behavior. Depressing a button becomes an event when it
emerges as “a + time”—that is, a (as a series of actions
[e.g., create, process, etc.]; see Fig. 2 in section 2) emerges
within time, which imposes its features on a. For example,
the series of (waking up, eating breakfast, going to work)
is not a series of events even if each action is specified
with a time stamp. For example, the series of (waking up

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.2, February 2021

136

at 6 AM on 8/1/2020, eating breakfast at 7 AM on
8/1/2020, going to work at 9 AM on 8/1/2021) is not a
series of events because time specification has its own
rules. The state and statechart diagram are just static
descriptions of a system, just as class and sequence
diagrams are. In TM, time is a second-level aspect in
modeling that lifts the entire model to another dimension.
This type of thinking guides the recasting of the railcar
system as follows.

6. Modeling the Railcar System

From our perspective, the railcar system can be viewed as
follows:

(a) The processes in each terminal are repeated in
each of the six terminals. Thus, we can concentrate on
one terminal.
(b) Inside each terminal are two halves that mirror
each other, with each serving one direction of travel.
Hence, the functional design is repeated in each half
of the terminal.
(c) An important feature of the system is the
existence of parking areas in the terminals. We will
also assume that only two spots are available in the
parking system (P): P1 and P2. Hence, Fig. 12 shows
the resulting architectural description of any terminal.
(d) In addition to the terminals, we will assume that
the whole railcar system is divided into four types of
100-yard areas as shown in Fig. 13, where
- T denotes a terminal,
- B is the area just before the terminal,
- A is the area just after the terminal, and
- C is the area next to A.

Note that the sequence of A, C will be repeated until the
next terminal is reached, where C becomes B.

We start by modeling the traffic going from top to bottom.
When a railcar enters an area, the area is flagged as
occupied, and the flag is set to unoccupied when the railcar
leaves the area as shown in Fig. 14 for the four types of
areas. Additionally, special consideration exists for a
possible conflict between an approaching railcar entering
the terminal and a railcar leaving the parking lots. We give
priority to the first railcar over the latter. Thus, when a rail
car enters B, it flags approaching to block any railcar
coming from P. As soon as an approaching railcar receives
the signal that T is unoccupied:
- It reserves it (dash arrow pointing down) as occupied
even though it is still in A. This is to ensure that no railcar
comes from P, as the occupied flag blocks other railcars
from entering, in addition to the approaching flag (note
the OR operation).
- The approaching railcar can now leave B and enter T;
thus, B is set to unoccupied, and the approaching flag is
reset.

We start at the top-right corner of Fig. 15 (number 1 in
green), where the railcar is about to enter B.

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.2, February 2021

137

Fig. 15 The static model of one terminal of the railcar system.

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.2, February 2021

138

 As soon as the railcar crosses to B (2), it sets the flags

as occupied and approaching (3), which blocks any
railcar from coming from P to T (4).

 As the railcar approaches, the railcar itself is
processed; for example, the railcar slows down, stops,
and watches for the unoccupied flag (5 and 6) being
set by the last railcar to leave T (5). If T is not
occupied (6), the approaching railcar makes T
occupied even before entering T (7).

 Now, the railcar leaves B, setting its status to
unoccupied and resetting the approaching flag (8). It
moves to the terminal, where it parks for 90 seconds
(9).

 After stopping in the terminal for 90 seconds, the
railcar either continues its travel trail (10) or goes to
park in terminal P1 or P2, assuming that one of them
is available (11). In the latter case, the railcar enters
the parking facilities (12); it enters either P1 or P2
(13).

 If the rail car enters P (12), it parks in P1 or P2 (13).
Later, if a railcar leaves P, it goes back to the station
(14 and 15).

 If the railcar goes ahead to its journey station (10),
then before leaving T, a check occurs as to whether A
is unoccupied. This flag is set to A itself by the last
railcar to leave it (16); otherwise, the railcar in T waits.
Hence, when A is not occupied, the railcar moves into
A, making it occupied (17). The same thing is
repeated for any consecutive areas, such as A and C:

- Determining whether the next area is unoccupied
(18 and 19) before moving in.
- Making the area occupied upon moving in, and
triggering unoccupied when moving out (20 and
21).

Now, we partition the static model in an attempt to identify
the regions where events are situated or occur, as well as
to prepare for specifying the system’s chronology, thus
specifying the system’s behavior. Here, we see the in state
(statecharts) that these static regions are misidentified as
the loci of behavior. According to the state-machine
literature, these loci are triggered by (outside) events—for
example, pressing a key that changes them (e.g., from
terminal is empty to terminal is occupied). However, this
change is a logical change, not a temporal one. The
terminal is empty in the 19th century changing to become
occupied in the 21st century is a change in the
corresponding state machine because the order of change
is satisfactory. Similarly, such a familiar example of
ordering a product in the 19th century that leads to
delivering the product in the 21st century is acceptable in
state machines because they are timeless logical machines.
In TM, the decompositions of the static model are further
assimilated with time to define events.

The set of events in the railcar system is given as follows
(see Fig. 16).
Event 1 (E1): Assuming B is unoccupied, the railcar enters B,

making it occupied.
Event 2 (E2): Approaching is set.
Event 3 (E3): Traffic from P1 and P2 is blocked.
Event 4 (E4): The railcar in B is processed (being slowed,

stopped) while the railcar waits for the decision on whether
it can enter the terminal.

Event 5 (E5): Unoccupied of T is set by the last railcar to leave
the terminal. If the system starts from nothing, then
unoccupied should be set initially.

Event 6 (E6): The railcar sets the terminal to occupied and then
leaves B, changing the area’s status to unoccupied and
resetting approaching.

Event 7 (E7): The railcar enters T.
Event 8 (E8): The railcar stops in the terminal for 90 seconds.
Event 9 (E9): A is flagged as unoccupied by the last railcar to

leave that area.
Event 10 (E10): The railcar leaves T, setting the terminal status to

unoccupied and the status of A to occupied.
Event 11 (E11): C is flagged as unoccupied by the last railcar to

leave that area.
 Event 12 (E12): The railcar leaves B, changing B’s status to

unoccupied.
Event 13 (E13): The railcar moves to C, changing C’s status to

occupied.
Event 14 (E14): In T, the railcar moves to park in P1 or P2. We

assume that empty parking spots are globally known.
Event 15 (E15): A railcar moves out of P1 or P2 to T, changing

T’s status to occupied.
Fig. 17 shows the resultant behavior of the railcar system.
Of course, such a behavior is recurrent in other terminals.

7. Conclusion

In the software development life cycle, challenges still
exist in translating requirements into a design artifact and
then into an implementation, then validating the results.
Many methodologies, languages, and tools exist for
facilitating system development processes. This paper is a
venture into project development. We concentrate on a
specific methodology used in Harel et al.’s novel
development environment, which integrates a scenario-
based engineering object orientation and statecharts into
developing a railcar system. The railcar system is used as a
detailed sample of translating requirements into a design
artifact and then into an implementation, then validating
the results. The project is re-cased as a single integrated
modeling endeavor, to be contrasted with
scenario/statechart development. This scheme enriches
understanding through experimenting with and contrasting
various development methods for software projects. For
example, our claim that state machines are timeless logical
machines seems to be an important issue that, of course,
requires further consideration of the notions of events and
states.

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.2, February 2021

139

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.2, February 2021

140

References

[1] Yang, L.: Ontology Learning for Systems Engineering Body
of Knowledge. Ph.D. Thesis, National University of Ireland,
Galway (2020)

[2] Buede, D.M., Miller, W.D.: The Engineering Design of
Systems Models and Methods. 3rd ed. John Wiley & Sons,
Hoboken, NJ (2016)

[3] Harel, D., Marelly, R., Marron, A., Szekely, S.: Integrating
Inter-Object Scenarios with Intra-object Statecharts for
Developing Reactive Systems. arXiv:1911.10691v2 [cs.SE]
(2020)

[4] van Ruijven, L.C.: Ontology for Systems Engineering. In:
Paredis, C.J.J., Bishop, C., Bodner, D. (eds.), Procedia
Computer Science. pp. 383–392. Elsevier, Atlanta, GA
(2013). https://doi.org/10.1016/j.procs.2013.01.040

[5] Hallberg, N., Jungert, E., Pilemalm, S.: Ontology for
Systems Development. Int. J. Softw. Eng. Knowl. Eng. 24,
329–345 (2014).
https://doi.org/10.1142/S0218194014500132

[6] Ernadote, D.: Ontology-Based Pattern for System
Engineering. In: 2017 ACM/IEEE 20th International
Conference on Model Driven Engineering Languages and
Systems (MODELS). IEEE, pp. 248–258 (2017).
https://doi.org/10.1109/MODELS.2017.4

[7] Yang, L., Cormican, K., Yu, M.: Towards a Methodology
for Systems Engineering Ontology Development—An
Ontology for System Life Cycle Processes. In: 2017 IEEE
International Systems Engineering Symposium (ISSE).

IEEE, pp. 1–7. IEEE, Vienna, Austria (2017).
https://doi.org/10.1109/SysEng.2017.8088299

[8] Yang, L., Cormican, K., Yu, M.: An Ontology Model for

Systems Engineering Derived from ISO/IEC/IEEE 15288:
2015: Systems and Software Engineering—System Life
Cycle Processes. In: Proc. of the 19th International
Conference on Knowledge Engineering and Ontological
Engineering (ICKEOE 2017). World Academy of Science,
Engineering and Technology, London (2017)

[9] Dori, D.: Model-Based Systems Engineering with OPM and
SysML. 1st ed. SpringerVerlag, New York (2016)

[10] Dori, D., Sillitto, H.: What Is a System? An Ontological
Framework. Syst. Eng. 20, 207–219 (2017).
https://doi.org/10.1002/sys.21383

[11] Ramos, M.A., Masiero, P.C., Penteado, R.A.D., Braga,
R.T.V.: Extending Statecharts to Model System Interactions.
Journal of Software Engineering Research and Development
3, 12 (2015). DOI: 10.1186/s40411-015-0026-x

[12] Al-Fedaghi, S.: Conceptual Temporal Modeling Applied to
Databases. (IJACSA) International Journal of Advanced Computer
Science and Applications 12(1), p. 524 - 534 (2021). DOI
10.14569/IJACSA.2021.0120161

[13] Al-Fedaghi, S.: Computer Program Decomposition and
Dynamic/Behavioral Modeling. Int. J. Comput. Sci. Netw.
20(8), 152–163 (2020). DOI:
10.22937/IJCSNS.2020.20.08.16

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.2, February 2021

141

[14] Al-Fedaghi, S.: UML Modeling to TM Modeling and Back.

IJCSNS 21(1), 84–96 (2021)
[15] Heidegger, M.: The Thing. In: Hofstadter, A. (trans.), Poetry,

Language, Thought. pp. 161–184. Harper and Row, New
York (1975)

[16] Deleuze, G.: Bergsonism. Zone Books, New York (1991)
[17] Excel Software: State Model. Excel Software, Henderson,

NV, USA. Accessed 5/2/2021.
https://www.excelsoftware.com/statemodel

[18] Harel, D., Gery, E.: Executable Object Modeling with
Statecharts. In: Proc. of IEEE 18th International
Conference on Software Engineering. pp. 246–257 (1996).
DOI: 10.1109/ICSE.1996.493420

[19] Ali, A., Jawawi, D.N., Isa, M.A.: Modeling and Calculation
of Scenarios Reliability in Component-Based Software
Systems. In Software Engineering Conference (MySEC),
2014 8th Malaysian (2014). DOI:
10.1109/MySec.2014.6986007

[20] Ali, A., Jawawi, D.N., Isa, M.A.: Strategy for Scalable
Scenarios Modeling and Calculation in Early Software
Reliability Engineering. Jurnal Teknologi (Sciences &
Engineering) 77(9), 139–148 (2015)

[21] Liu, S., Liu, Y., Andre, É., Choppy, C., Sun, J.: A Formal
Semantics for Complete UML State Machines with
Communications. In: Johnsen E.B., Petre L. (eds.)
Integrated Formal Methods. IFM 2013. Lecture Notes in
Computer Science, vol. 7940, pp. 331–346. Springer, Berlin
(2013). https://doi.org/10.1007/978-3-642-38613-8_23

[22] Harel, D.: Statecharts: A Visual Formalism for Complex
Systems. Science of Computer Programming 8(3), 231–274
(1987)

