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Summary 
This paper is in the intersection of software engineering and 
system engineering, two intimately intertwined disciplines. A 
dominating theme in this paper is the integral conceptualization 
of systems at large, as well as an underlying concern with 
software systems. In the software development life cycle, 
challenges still exist in translating requirements into a design 
artifact and then into an implementation (e.g., coding), then 
validating the results. From our perspective, software engineering 
requires an integrating paradigm toward a unified modeling 
orientation. Many methodologies, languages, and tools exist for 
facilitating system development processes. This paper is a 
venture into project development. To focus the materials, we 
concentrate on Harel’s novel (and classic) development 
environment, which integrates a scenario-based engineering 
object orientation and statecharts through developing a railcar 
system. The railcar system is used as a detailed sample of 
translating requirements into a design artifact and then into an 
implementation, then validating the result. The project is re-cased 
as a single integrated modeling endeavor to be contrasted with 
the scenario and statecharts’ development. The result of this 
scheme is an enriched understanding through experimenting with 
and contrasting various development methods of software 
projects. 
Key words: 
Conceptual modeling; system development process; static model; 
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1. Introduction 

This paper is in the intersection of software engineering and 
system engineering, two intimately intertwined disciplines [1]. A 
dominating theme in the research work is the integral 
conceptualization of systems. To understand such integration, 
consider Buede and Miller’s [2] definition of a system as “a 
collection of hardware, software, people, facilities, and 
procedures organized to accomplish some common objectives.” 
This same definition is used in the adopted model in this paper, 
the so called thinging machine (TM). An abstract thinging 
machine is constructed from an intertwining net of hardware, 
software, person, facility, and procedure thinging submachines 
organized to accomplish common objectives. We will 
demonstrate the assembly of such machines with the case study 
of a railcar system [3]. The main component of this system is 
software. Thus, our underlying concern is with the development 
of software systems. In software development life cycles, 
challenges still exist in translating the requirement layer into a 
design layer and then into an implementation code layer, then 
validating the correctness of the results [3].  

1.1 Difficulties in Software and System Engineering 

We view difficulties with software engineering as a special case 
of difficulties in system engineering. According to Yang [1], the 
major reason for system failure costs is a lack of adequate 
information exchange and communication within projects [4], as 
a quarter of these failures arise during a system’s design phase. 
This can be traced to a lack of efficient collaborations between 
parties involved in the system’s life cycle processes. According 
to Hallberg et al. [5], no “unambiguous” and comprehensive use 
of concepts exists in the systems development field [1]. This 
causes misunderstandings, misinterpretations, and irritations 
when one is developing systems, which inhibit the emerging 
system’s functioning and usability [1]. Additionally, according to 
Ernadot [6], present system engineering standards remain 
document centric, making their model-based transition very 
difficult. The prerequisite of model-based engineering is to 
achieve a logically rigorous specification of all processes (i.e., 
what things/objects exist in the ontology, what events are, and 
how they evolve). Yang et al. [7-8] observe that current system 
development standards fail to handle such issues explicitly 
because their textual descriptions often have terminological 
ambiguity and relational inconsistencies. 

1.2 Needs  

The international standard of ISO/IEC/IEEE 15288: 2015, 
Systems and Software Engineering – System Life Cycle 
Processes provides generic top-level process descriptions to 
support systems engineering [8]. According to Yang, Cormican, 
and Yu [8], due to dependence on an input–process–output (IPO) 
diagram, the processes defined in the standard lack a whole and 
systemic blueprint. They require the tracing of each input or 
output so that each can be specified and detailed. No model is 
provided to define each process, classify elements, clarify the 
relationships, and unify the terminology. 

From our perspective, system and software engineering require 
an integrating paradigm that shifts their direction to focusing on 
unifying notions, instead of divergence and variation. The basic 
premise of this paper is that a crucial instrument that assists in 
the software development process is a single integrated 
conceptual model that stakeholders from various professional 
backgrounds understand and discuss, and that can be tested and 
validated, either manually or automatically, at various layers [9-
10]. 
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1.3 Overview of the Paper 

In the next section, we relate the paper to the general topic 
of system development. Of special importance in this 
context is modeling compositions using diagrammatic 
representations, which can increase understanding and 
motivate discussions about interactions before systems are 
effectively designed. This leads to “possibly reducing risks 
and costs associated to system misbehaviors discovered in 
advanced stages of the development process” [11]. Clearly, 
this subject is very broad; thus, we focus on a single 
detailed system: a railcar system. Section 3 reviews the 
basic TM modeling. Section 4 provides a new contribution 
in the form of a TM example, which includes a 
comparison with known state machines. In particular, the 
example demonstrates the explicit representation of events 
and behavior in TM modeling. The following sections 
include detailed specifications for recasting the selected 
railcar system using TM modeling. The hope is that this 
model project demonstrates the viability of TM modeling 
for system development. 

2. Related Works 

Many methodologies, languages, and tools exist for 
facilitating the software development process. To produce 
concrete results that disclose the features of the 
aforementioned TM model, we recast a fully detailed 
system scheme from Harel et al.’s [3] project, which 
involves a novel development environment that integrates 
a scenario-based engineering object orientation and 
statechart formalism for system development [10]. Their 
integration enables semantically rich execution as well as 
the sharing of and interfacing with objects and events. It 
can be used to create and enhance testable models from the 
early stage, which involves requirements elicitation, to the 
detailed design stage [3]. According to Harel et al. [3], 
scenario-based specifications are characterized by their 
inter-object nature, and a scenario can contain a flow of 
events involving any number of objects, both internal and 
external, including subsystems and human users. 

Our perspective is different from Harel et al.’s approach 
[3] and other similar methodologies and modeling 
techniques (e.g., UML and SysML). These methodologies 
achieve success in modeling projects based on the 
multiplicity of their specifications (e.g., statecharts for 
objects) and the variation of their representations 
(heterogeneous types of UML diagrammatic notions). 
However, they fail to furnish a nucleus around which 
various phases of the engineering process evolve. 
However significant the need is for different views of the 
system, a basic need still exists for an underlying model 

that links views and events together in a uniform, 
vertically multi-level conceptual structure.  

3. Thinging Machines 

The TM model articulates the ontology of the world in 
terms of an entity that is simultaneously a thing and a 
machine, called a thimac [12-14]. A thimac is like a 
double-sided coin. One side of the coin exhibits the 
characterizations that the thimac assumes; on the other 
side, operational processes emerge, which provide a 
dynamism that goes beyond structures or things to 
embrace other things in the thimac. A thimac preserves 
individuality and simultaneously is understood to be a 
cluster of regions (bundles, to be defined later) from which 
dynamics originate, in the form of events (to be defined 
later) – see Fig. 1. 
  
 
 
 
 
 
 
 
 
   
 
 
A thing is subjected to doing (e.g., a tree is a thing that is 
planted, cut, etc.), and a machine does (e.g., a tree is a 
machine that absorbs carbon dioxide and uses sunlight to 
make oxygen). The tree thing and the tree machine are two 
faces of the tree thimac. A thing is viewed based on 
Heidegger’s [15] notion of thinging, in which a thing is a 
flux of five static generic actions that, with time, transform 
into atomic event constellations within specified 
acceptable behaviors (see Fig. 2). 
 
The simplest type of machine is shown in Fig. 3. The 
actions in the machine (also called stages) are as follows: 
Arrive: A thing moves to another machine. 
Accept: A thing enters a machine. For simplification, we 

assume that all arriving things are accepted; 
hence, we can combine the thing’s arrival and 
acceptance into the receive stage. 

 

Fig. 1 Illustration of the thimac as a thing/machine (left) and its 
dynamics, which are specified by decomposing the machine into 

regions of events (right). 

Thimac 
(Abstract)
Machine 

Regions of events 

Thing, 
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Release: A thing is marked as ready for transfer outside 

of the machine (e.g., passengers in an airport 
wait to board their plane following passport 
clearance). 

Process: A thing is changed in form, but no new thing 
results. 

Create: A new thing is born in a machine. 
Transfer: A thing is input into or output from a machine. 
 
Additionally, the TM model includes storage and 
triggering (denoted by a dashed arrow in this study’s 
figures), which initiates a flow of things from one machine 
to another. Multiple machines can interact with each other 
through the movement of things or by triggering stages. 
Triggering is a transformation from one series of 
movements to another (e.g., electricity triggers cold air). 
 
4. TM Modeling Example 

The purpose of this section is to demonstrate TM 
modeling in contrast to other modeling—in this case, for 
describing a state machine. Specifically, we show that 
state diagrams model static and not behavioral descriptions. 
 
4.1 General Description of TM Modeling  
 
TM modeling produces three levels of description: static, 
dynamic, and behavioral models. A static description 
provides logical and complete descriptions of machines 
and inter-machines in the modeled system. The description 
constructs the whole model as a machine. Each machine in 
the model still has its own machinery, as a machine and as 
part of the model as a machine. The whole assembly is a 
TM; for example, the whole model is created, processed, 
released, transferred, and/or received, and every 
submachine creates, processes, releases, transfers, and/or 
receives things (machines). The “or” indicates that some 
machines may not consist of all five actions. Additionally, 
each machine in the assembly has links to other outside 
machines. For simplicity, we will not include “create” in 
every machine and assume that the mere presence of the 
machine implies that it is created. Additionally, we will 
not surround each machine or submachine by a rectangle, 

especially when the (flow) thing inside the machine is 
coming from another machine.  
 
At the static level, only structurality exists. In addition, no 
change occurs. The meaning of staticity can be illustrated 
as shown in Fig. 4 (left). It can be said that the movement 
of the ball occurs where it changes locations. However, 
time is not incorporated into the static model, in the sense 
that time does not appear in the picture. The illusion of 
time as a spatial quantity is inevitable as soon as time is 
spatialized [16]. In such a picture, the ball may be 
specified as appearing first in the middle, then at the right 
end, and finally at the left end. That is, no time 
specification exists for which position follows another 
position. The representation specifies logical space 
relationships, not temporal ones. If time is involved, we 
would have a single ball in Fig. 4 instead of six balls. Thus, 
the static model can include contradictions as shown in Fig. 
4 (right), in which traffic in two directions is permitted on 
a one-lane street. In the static model, such a description is 
permitted because time is not included in such a 
description. When time is involved, traffic is permitted in 
one direction, say at night, and it is permitted in the 
opposite direction during the day. 
 
A static model is a single picture of all relevant machines. 
As a thing, it may be susceptible to dynamics. In the model, 
dynamics refers to an assembly of machines. For example,  
John is applauding; his hands are clapping each other. 
These dynamics are capabilities that are not in the static 
model because they involve portions of the model. To 
inject such dynamics, we must divide the description into 
decompositions that change within the static model.   

Accordingly, we must decompose the static model into 
regions that may make changes. The identification of these 
regions produces the dynamic model. To realize these 
potential changes, we must inject time into these regions to 
create events. An event is a static region (the location of 
the change) and a time submachine. Finally, the events 
gather into a chronological order to form the behavioral 
model. 
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4.1 Example of TM Modeling  
 
According to Excel software [17], tables are an effective 
way of expressing information about states and events in 
modeling. This is illustrated in the state transition table 
shown in Fig. 5. Fig. 6 shows the corresponding TM 
models for the given states and actions. Note that events 
are not included because they are second-level notions and 
will be included when the TM behavioral model is 
developed. In Fig. 6, first, money is seen entering the 
machine (to the right of the thick vertical line, circle 1).  
 
This makes the machine receive the money (2) and process 
it (3). In this process, verification is performed as follows:  

 
- If it fails (4), a rejection—for example, a 

message—is sent out (5). 
- If it passes, the equivalent coins are released (7). 
- The coin storage is processed (8) to determine 

whether sufficient funds exist.   
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Accordingly, if sufficient funds are available, no further 
action is taken, and the machine waits for the next 
detection of input money (9). 

- If insufficient funds (10) are available, the “out of 
money” light is turned ON (11). 

- If additional funds are provided (12), the “out of 
money” light is turned OFF (13).  

 
One clear observation from Fig. 6 is that it does not 
include anything about time. To illustrate this, consider the 
definition of time in a TM for the event money refill as 
shown in Fig. 7. Note that the event money refill is 
different from the series (order) of actions for money refill 
as will be discussed later. 
 
An event is a machine including at least three 
submachines: the region (of the event), time, and the event 
itself. Thus, the static description in Fig. 6 can be 
decomposed into regions of events as shown in Fig. 8. 
There, the static TM model is decomposed into the 
following.  
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A: Detection of money 
B: Processing of the money 
C: Verification is failed, and a rejection is sent. 
D: Verification is passed, and coins are dispensed. 
E: Coins are processed 
F: Coins are insufficient, and the out-of-money light is 
turned ON. 
G: Money is sufficient. 
H: Money is refilled. 
I: The out-of-money light is turned OFF. 

 
In contrast to state machines, TM modeling explicitly 
introduces time to construct events by using these 
decompositions as regions of events. Accordingly, we 
represent the event in a region by E (for event), with the 
region’s name being a subscript. Thus, we have the events 
of EA, EB, EC, ED, EE, EF, EG, EH, and EI. Fig. 9 shows the 
chronology of these events that form the machine’s 
behavior. 
 
Examining the state machine represented by the table in 
Fig. 5, we see that states are just regions or locations in the 
TM static representation. The state verify dollar is a region 
in the static description where a potential event exists. 
Verify dollar is a space without time embedded in it. Thus, 
if we have the sequence of states (verify dollar, dispensing 
coins), then this sequence does not reflect a behavior 
because the sequence of verify dollar on Feb. 2000, 
dispense coins on Jan. 2021 is a correct sequence of states 
but is not acceptable behavior.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
To reach behavior, we must add time to states. 
Accordingly, states are static and are not behavioral 
descriptions. This observation is important in system 
development based on states and statechart diagrams. 
 
5. The Railcar System 

 
Several papers have discussed a railcar system [3, 18-21]. 
The system involves six terminals located on a cyclic path. 
Each pair of adjacent terminals is connected by two rail 
tracks, one for clockwise and one for counterclockwise 
travel. Several railcars transport passengers between 
terminals. A control center receives, processes, and sends 
data to various components (see the partial picture in Fig. 
10). Each terminal has a parking area containing four 
parallel platforms.  
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According to Harel et al. [3], statecharts [22] augment 
conventional state machines with notations and semantic 
definitions for the concurrency and hierarchy necessary to 
specify and then directly execute complex behavior. An 
object-oriented version of the statechart language has 
become the basis for the state-based language of the UML. 
Additionally, statecharts have become the visual 
formalism of choice for intra-object behavior specification 
[3]. This intra-object behavior is typically specified in the 
UML sequence diagrams; however, “the translation from 
an inter-object, scenario-based specification to 
implementation is a central issue in software engineering, 
and constitutes a substantial part of many software 
development efforts” [3]. A main objective of the railcar 
system example is to “present an overall development 
philosophy, which supports a natural integration of inter-
object and intra-object methodologies” [3]. Fig. 11 shows 
a sample diagram that Harel et al. [3] uses in modeling the 
railcar system.  
 
The purpose of our showing portions of this diagram is to 
contrast them later with what we called the integral 
conceptualization of systems in the introduction of this 
paper, as TM will use a single diagram with multilevel 
semantics (e.g., static and behavioral). 
 
In addition to the different modeling styles, the points to 
watch in developing the railcar system are as follows:  
 Modeling projects based on a multiplicity of 

specifications (e.g., statecharts for objects) and 
variations of representations (heterogeneous types 
of UML diagrammatic notions) 

 Modeling projects based on a nucleus around which 
various phases of the engineering process evolve, 
with an underlying model linking various views and 
events together into a uniform, vertically multi-level 
conceptual structure.  

 
Additionally, Harel et al. [3] do not provide a formal 
definition of an event, even though the word is repeated 
more than 50 times in the article. 
  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Apparently, they took the notion of events from UML. 
However, they mention, “One of the main technical issues 
[…] was what mechanism to use for interobject interaction. 
[…] we adopted the two mechanisms: An object can 
generate an event, [and] an object can invoke an operation 
of another object” [3]. Here, the central issue is the claim 
of having rigorously defined semantics of precise model 
behavior over time. Events in such an orientation are even 
more important of a notion than that of objects. 
 
To emphasize the issue under discussion, here, we 
reexamine what an event is in TM. Consider a 
phenomenon such as depressing a button, denoted as “a.” 
This is called an event (see Harel [19]). In TM, a is a type 
of (series) action. It involves the flow of a hand to process 
the button. This description is just a specification, just as 
how x + y is a description and not something happens in 
reality. Similarly, depressing a button is not an event but 
rather a type of event. Hence, a state machines (and 
consequently statecharts) cannot express events, let alone 
behavior. Depressing a button becomes an event when it 
emerges as “a + time”—that is, a (as a series of actions 
[e.g., create, process, etc.]; see Fig. 2 in section 2) emerges 
within time, which imposes its features on a. For example, 
the series of (waking up, eating breakfast, going to work) 
is not a series of events even if each action is specified 
with a time stamp. For example, the series of (waking up 
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at 6 AM on 8/1/2020, eating breakfast at 7 AM on 
8/1/2020, going to work at 9 AM on 8/1/2021) is not a 
series of events because time specification has its own 
rules. The state and statechart diagram are just static 
descriptions of a system, just as class and sequence 
diagrams are. In TM, time is a second-level aspect in 
modeling that lifts the entire model to another dimension. 
This type of thinking guides the recasting of the railcar 
system as follows. 

6. Modeling the Railcar System 

From our perspective, the railcar system can be viewed as 
follows: 

(a) The processes in each terminal are repeated in 
each of the six terminals. Thus, we can concentrate on 
one terminal.  
(b) Inside each terminal are two halves that mirror 
each other, with each serving one direction of travel. 
Hence, the functional design is repeated in each half 
of the terminal. 
(c) An important feature of the system is the 
existence of parking areas in the terminals. We will 
also assume that only two spots are available in the 
parking system (P): P1 and P2. Hence, Fig. 12 shows 
the resulting architectural description of any terminal. 
(d) In addition to the terminals, we will assume that 
the whole railcar system is divided into four types of 
100-yard areas as shown in Fig. 13, where  
- T denotes a terminal,  
- B is the area just before the terminal, 
- A is the area just after the terminal, and 
- C is the area next to A. 

Note that the sequence of A, C will be repeated until the 
next terminal is reached, where C becomes B. 
 
We start by modeling the traffic going from top to bottom. 
When a railcar enters an area, the area is flagged as 
occupied, and the flag is set to unoccupied when the railcar 
leaves the area as shown in Fig. 14 for the four types of 
areas. Additionally, special consideration exists for a 
possible conflict between an approaching railcar entering 
the terminal and a railcar leaving the parking lots. We give 
priority to the first railcar over the latter. Thus, when a rail 
car enters B, it flags approaching to block any railcar 
coming from P. As soon as an approaching railcar receives 
the signal that T is unoccupied: 
- It reserves it (dash arrow pointing down) as occupied 
even though it is still in A. This is to ensure that no railcar 
comes from P, as the occupied flag blocks other railcars 
from entering, in addition to the approaching flag (note 
the OR operation). 
- The approaching railcar can now leave B and enter T; 
thus, B is set to unoccupied, and the approaching flag is 
reset. 
 

We start at the top-right corner of Fig. 15 (number 1 in 
green), where the railcar is about to enter B. 
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Fig. 15 The static model of one terminal of the railcar system. 
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 As soon as the railcar crosses to B (2), it sets the flags 

as occupied and approaching (3), which blocks any 
railcar from coming from P to T (4).  

 As the railcar approaches, the railcar itself is 
processed; for example, the railcar slows down, stops, 
and watches for the unoccupied flag (5 and 6) being 
set by the last railcar to leave T (5). If T is not 
occupied (6), the approaching railcar makes T 
occupied even before entering T (7).  

 Now, the railcar leaves B, setting its status to 
unoccupied and resetting the approaching flag (8). It 
moves to the terminal, where it parks for 90 seconds 
(9).  

 After stopping in the terminal for 90 seconds, the 
railcar either continues its travel trail (10) or goes to 
park in terminal P1 or P2, assuming that one of them 
is available (11). In the latter case, the railcar enters 
the parking facilities (12); it enters either P1 or P2 
(13). 

 If the rail car enters P (12), it parks in P1 or P2 (13). 
Later, if a railcar leaves P, it goes back to the station 
(14 and 15).  

 If the railcar goes ahead to its journey station (10), 
then before leaving T, a check occurs as to whether A 
is unoccupied. This flag is set to A itself by the last 
railcar to leave it (16); otherwise, the railcar in T waits. 
Hence, when A is not occupied, the railcar moves into 
A, making it occupied (17). The same thing is 
repeated for any consecutive areas, such as A and C: 

- Determining whether the next area is unoccupied 
(18 and 19) before moving in. 
- Making the area occupied upon moving in, and 
triggering unoccupied when moving out (20 and 
21). 
 

Now, we partition the static model in an attempt to identify 
the regions where events are situated or occur, as well as 
to prepare for specifying the system’s chronology, thus 
specifying the system’s behavior. Here, we see the in state 
(statecharts) that these static regions are misidentified as 
the loci of behavior. According to the state-machine 
literature, these loci are triggered by (outside) events—for 
example, pressing a key that changes them (e.g., from 
terminal is empty to terminal is occupied). However, this 
change is a logical change, not a temporal one. The 
terminal is empty in the 19th century changing to become 
occupied in the 21st century is a change in the 
corresponding state machine because the order of change 
is satisfactory. Similarly, such a familiar example of 
ordering a product in the 19th century that leads to 
delivering the product in the 21st century is acceptable in 
state machines because they are timeless logical machines. 
In TM, the decompositions of the static model are further 
assimilated with time to define events.  

 
The set of events in the railcar system is given as follows 
(see Fig. 16). 
Event 1 (E1): Assuming B is unoccupied, the railcar enters B, 

making it occupied.  
Event 2 (E2): Approaching is set. 
Event 3 (E3): Traffic from P1 and P2 is blocked.  
Event 4 (E4): The railcar in B is processed (being slowed, 

stopped) while the railcar waits for the decision on whether 
it can enter the terminal. 

Event 5 (E5): Unoccupied of T is set by the last railcar to leave 
the terminal. If the system starts from nothing, then 
unoccupied should be set initially.  

Event 6 (E6): The railcar sets the terminal to occupied and then 
leaves B, changing the area’s status to unoccupied and 
resetting approaching. 

Event 7 (E7): The railcar enters T. 
Event 8 (E8): The railcar stops in the terminal for 90 seconds.  
Event 9 (E9): A is flagged as unoccupied by the last railcar to 

leave that area. 
Event 10 (E10): The railcar leaves T, setting the terminal status to 

unoccupied and the status of A to occupied. 
Event 11 (E11): C is flagged as unoccupied by the last railcar to 

leave that area. 
 Event 12 (E12): The railcar leaves B, changing B’s status to 

unoccupied. 
Event 13 (E13):  The railcar moves to C, changing C’s status to 

occupied.  
Event 14 (E14): In T, the railcar moves to park in P1 or P2. We 

assume that empty parking spots are globally known. 
Event 15 (E15): A railcar moves out of P1 or P2 to T, changing 

T’s status to occupied. 
Fig. 17 shows the resultant behavior of the railcar system. 
Of course, such a behavior is recurrent in other terminals. 
 
7. Conclusion  
 
In the software development life cycle, challenges still 
exist in translating requirements into a design artifact and 
then into an implementation, then validating the results. 
Many methodologies, languages, and tools exist for 
facilitating system development processes. This paper is a 
venture into project development. We concentrate on a 
specific methodology used in Harel et al.’s novel 
development environment, which integrates a scenario-
based engineering object orientation and statecharts into 
developing a railcar system. The railcar system is used as a 
detailed sample of translating requirements into a design 
artifact and then into an implementation, then validating 
the results. The project is re-cased as a single integrated 
modeling endeavor, to be contrasted with 
scenario/statechart development. This scheme enriches 
understanding through experimenting with and contrasting 
various development methods for software projects. For 
example, our claim that state machines are timeless logical 
machines seems to be an important issue that, of course, 
requires further consideration of the notions of events and 
states. 
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