DOI QR코드

DOI QR Code

Baer-Kaplansky Theorem for Modules over Non-commutative Algebras

  • Received : 2019.12.03
  • Accepted : 2020.12.14
  • Published : 2021.06.30

Abstract

In this paper we investigate the Baer-Kaplansky theorem for module classes on algebras of finite representation types over a field. To do this we construct finite dimensional quiver algebras over any field.

Keywords

References

  1. M. Auslander, I. Reiten and S. O. Smalo, Representation theory of Artin algebras, Cambridge University Press, 1995.
  2. G. D'Este, Indecomposable non uniserial modules of length three, Int. Electron. J. Algebra, 27(2020), 218-236. https://doi.org/10.24330/ieja.663075
  3. G. D'Este and D. Keskin Tutuncu, Pseudo projective modules which are not quasi projective and quivers, Taiwanese J. Math., 22(2018), 1083-1090. https://doi.org/10.11650/tjm/180401
  4. L. Fuchs, Infinite abelian groups II, Pure and Applied Mathematics 36-II, Academic Press, New York, 1973.
  5. G. Ivanov, Generalizing the Baer-Kaplansky theorem, J. Pure Appl. Algebra, 133(1998), 107-115. https://doi.org/10.1016/S0022-4049(97)00187-4
  6. G. Ivanov and P. Vamos, A characterization of FGC rings, Rocky Mountain J. Math., 32(2002), 1485-1492. https://doi.org/10.1216/rmjm/1181070035
  7. D. Keskin Tutuncu and R. Tribak, On Baer-Kaplansky classes of modules, Algebra Colloq., 24(2017), 603-610. https://doi.org/10.1142/S1005386717000396
  8. K. Morita, Category-isomorphisms and endomorphism rings of modules, Trans. Amer. Math. Soc., 103(1962), 451-469. https://doi.org/10.1090/S0002-9947-1962-0140560-2
  9. C. M. Ringel, Tame Algebras and Integral Quadratic Forms, Lecture Notes in Mathematics 1099, Springer-Verlag, Berlin, 1984.
  10. C. M. Ringel, Infinite length modules. Some examples as introduction, Infinite length modules (Bielefeld, 1998), 1-73, Trends Math., Birkhauser, Basel, 2000.
  11. R. Schiffler, Quiver Representations, Springer International Publishing Switzerland, 2014.