DOI QR코드

DOI QR Code

Algorithm of Common Solutions to the Cayley Inclusion and Fixed Point Problems

  • Dar, Aadil Hussain (Department of Mathematical Sciences, Baba Ghulam Shah Badshah University) ;
  • Ahmad, Mohammad Kalimuddin (Department of Mathematics, Aligarh Muslim University, Department of Mathematics, Faculty of Science, Islamic University of Madinah) ;
  • Iqbal, Javid (Department of Mathematical Sciences, Baba Ghulam Shah Badshah University) ;
  • Mir, Waseem Ali (Department of Mathematical Sciences, Baba Ghulam Shah Badshah University)
  • Received : 2020.07.29
  • Accepted : 2020.11.16
  • Published : 2021.06.30

Abstract

In this paper, we develop an iterative algorithm for obtaining common solutions to the Cayley inclusion problem and the set of fixed points of a non-expansive mapping in Hilbert spaces. A numerical example is given for the justification of our claim.

Keywords

References

  1. S. Adly, Perturbed algorithm and sensitivity analysis for a general class of variational inclusions, J. Math. Anal. Appl., 201(1996), 609-630. https://doi.org/10.1006/jmaa.1996.0277
  2. R. Ahmad and Q. H. Ansari, An iterative algorithm for generalized nonlinear variational inclusions, Appl. Math. Lett., 13(2000), 23-26.
  3. R. Ahmad, Q. H. Ansari and S. S. Irfan, Generalized variational inclusions and generalized resolvent equations in Banach spaces, Comput. Math. Appl., 49(11-12)(2005), 1825-1835. https://doi.org/10.1016/j.camwa.2004.10.044
  4. H. Brezis, Operateurs Maximaux Monotones et Semi-Groupes de Contractions dans les Espaces de Hilbert, North-Holland Mathematics Studies 5, North-Holland Publishing, Amsterdam, The Netherlands, 1973.
  5. S. S. Chang, Some problems and results in the study of non-linear analysis , Nonlinear Anal., 30(7)(1997), 4197-4208. https://doi.org/10.1016/S0362-546X(97)00388-X
  6. G. Das and J. P. Debata, Fixed points of quasi non-expansive mappings, Indian J. Pure Appl. Math., 17(1986), 1263-1269.
  7. Y. P. Fang and N. J. Huang, H-monotone operator and resolvent operator technique for variational inclusions, Appl. Math. Comput., 145(2003), 795-803. https://doi.org/10.1016/S0096-3003(03)00275-3
  8. Y. P. Fang and N. J. Huang, H-accretive operators and resolvent operator technique for solving variational inclusions in Banach spaces, Appl. Math. Lett., 17(2004), 647-653. https://doi.org/10.1016/S0893-9659(04)90099-7
  9. B. Halpern, Fixed points of nonexpanding maps, Bull. Amer. Math. Soc., 73(1967), 957-961. https://doi.org/10.1090/S0002-9904-1967-11864-0
  10. A. Hassouni and A. Moudafi, A perturbed algorithm for variational inclusions, J. Math. Anal. Appl., 185(1994), 706-712. https://doi.org/10.1006/jmaa.1994.1277
  11. N. J. Huang, A new completely general class of variational inclusions with noncompact valued mappings, Comput. Math. Appl., 35(10)(1998), 9-14. https://doi.org/10.1016/S0898-1221(98)00067-4
  12. P. Sunthrayuth and P. Cholamjiak, A modified extragradient method for variational inclusion and fixed point problems in Banach spaces, Appl. Anal., DOI: 10.1080/00036811.2019.1673374.
  13. S. Takahashi, W. Takahashi and M. Toyoda, Strong convergence theorems for maximal monotone operators with nonlinear mappings in Hilbert spaces, J. Optim. Theory Appl., 147(2010), 27-41. https://doi.org/10.1007/s10957-010-9713-2
  14. S. Zhang, H. W. L. Joseph and C. K. Chan, Algorithms of common solutions to quasi variational inclusion and fixed point problems, Appl. Math. Mech., 29(5)(2008), 571-581. https://doi.org/10.1007/s10483-008-0502-y