DOI QR코드

DOI QR Code

Intra-Articular Injection of High-Dose ELHLD Peptide for Managing Canine Stifle Osteoarthritis: Kinetic Gait Analysis

  • Jeong, Na-rae (Department of Veterinary Clinical Sciences, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University) ;
  • Kang, Byung-Jae (Department of Veterinary Clinical Sciences, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University)
  • Received : 2021.05.02
  • Accepted : 2021.05.20
  • Published : 2021.06.30

Abstract

Intra-articular injection of ELHLD peptide is considered to have a therapeutic effect in osteoarthritis (OA) through the inhibition of transforming growth factor-β1. This study aimed to assess the efficacy of intra-articular injections of high-dose ELHLD peptide (100 ㎍/kg) in canine stifle OA. Six client-owned dogs diagnosed with stifle OA were included. Selected dogs were treated with an intra-articular injection of high-dose ELHLD peptide (100 ㎍/kg). Outcome measures, including orthopedic examination, gait analysis, and Canine Brief Pain Inventory (CBPI) score, were evaluated four times after injection. Orthopedic examination, gait analysis, and owner's assessment (CBPI) improved significantly from 4 weeks after injection. In conclusion, we obtained sufficient evidence from this small sample that high-dose ELHLD peptide improves clinical signs of canine OA not only through subjective assessment but also through objective evaluation.

Keywords

Acknowledgement

This study was supported by the New Faculty Start-up Fund from Seoul National University.

References

  1. Belshaw Z, Asher L, Dean RS. Systematic review of outcome measures reported in clinical canine osteoarthritis research. Vet Surg 2016; 45: 480-487. https://doi.org/10.1111/vsu.12479
  2. Bronniche Moller Nielsen M, Pedersen T, Mouritzen A, Vitger AD, Nielsen LN, Poulsen HH, et al. Kinetic gait analysis in healthy dogs and dogs with osteoarthritis: an evaluation of precision and overlap performance of a pressure-sensitive walkway and the use of symmetry indices. PLoS One 2020; 15: e0243819. https://doi.org/10.1371/journal.pone.0243819
  3. Brown DC, Bell M, Rhodes L. Power of treatment success definitions when the Canine Brief Pain Inventory is used to evaluate carprofen treatment for the control of pain and inflammation in dogs with osteoarthritis. Am J Vet Res 2013; 74: 1467-1473. https://doi.org/10.2460/ajvr.74.12.1467
  4. Budsberg SC, Jevens DJ, Brown J, Foutz TL, DeCamp CE, Reece L. Evaluation of limb symmetry indices, using ground reaction forces in healthy dogs. Am J Vet Res 1993; 54: 1569-1574.
  5. Cabon Q, Febre M, Gomez N, Cachon T, Pillard P, Carozzo C, et al. Long-term safety and efficacy of single or repeated intra-articular injection of allogeneic neonatal mesenchymal stromal cells for managing pain and lameness in moderate to severe canine osteoarthritis without anti-inflammatory pharmacological support: pilot clinical study. Front Vet Sci 2019; 6: 10. https://doi.org/10.3389/fvets.2019.00010
  6. Chevalier X. Intraarticular treatments for osteoarthritis: new perspectives. Curr Drug Targets 2010; 11: 546-560. https://doi.org/10.2174/138945010791011866
  7. Cook JL, Smith PA, Bozynski CC, Kuroki K, Cook CR, Stoker AM, et al. Multiple injections of leukoreduced platelet rich plasma reduce pain and functional impairment in a canine model of ACL and meniscal deficiency. J Orthop Res 2016; 34: 607-615. https://doi.org/10.1002/jor.23054
  8. Fahie MA, Ortolano GA, Guercio V, Schaffer JA, Johnston G, Au J, et al. A randomized controlled trial of the efficacy of autologous platelet therapy for the treatment of osteoarthritis in dogs. J Am Vet Med Assoc 2013; 243: 1291-1297. https://doi.org/10.2460/javma.243.9.1291
  9. Finnson KW, Chi Y, Bou-Gharios G, Leask A, Philip A. TGF-β signaling in cartilage homeostasis and osteoarthritis. Front Biosci (Schol Ed) 2012; 4: 251-268.
  10. Gibert S, Lequang T, Maitre P, Poujol L, Cachon T, Carozzo C, et al. Sensitivity and specificity to determine lameness in dogs with a pressure walkway system. Comput Methods Biomech Biomed Eng 2010; 13(Suppl 1): 61-62. https://doi.org/10.1080/10255842.2010.493724
  11. Gigante A, Callegari L. The role of intra-articular hyaluronan (Sinovial) in the treatment of osteoarthritis. Rheumatol Int 2011; 31: 427-444. https://doi.org/10.1007/s00296-010-1660-6
  12. Henrotin Y, Sanchez C, Balligand M. Pharmaceutical and nutraceutical management of canine osteoarthritis: present and future perspectives. Vet J 2005; 170: 113-123. https://doi.org/10.1016/j.tvjl.2004.08.014
  13. Johnston SA. Osteoarthritis. Joint anatomy, physiology, and pathobiology. Vet Clin North Am Small Anim Pract 1997; 27: 699-723. https://doi.org/10.1016/S0195-5616(97)50076-3
  14. Keebaugh AE, Redman-Bentley D, Griffon DJ. Influence of leash side and handlers on pressure mat analysis of gait characteristics in small-breed dogs. J Am Vet Med Assoc 2015; 246: 1215-1221. https://doi.org/10.2460/javma.246.11.1215
  15. Kim HJ, Lee JW, Kwon YJ, Moon EJ, inventor; Ensol Biociences Inc., assignee. Novel Peptide and use thereof. European patent EP2588491B1. Sep 14, 2016.
  16. Kim SE, Pozzi A, Yeh JC, Lopez-Velazquez M, Au Yong JA, Townsend S, et al. Intra-articular umbilical cord derived mesenchymal stem cell therapy for chronic elbow osteoarthritis in dogs: a double-blinded, placebo-controlled clinical trial. Front Vet Sci 2019; 6: 474. https://doi.org/10.3389/fvets.2019.00474
  17. KuKanich B, Bidgood T, Knesl O. Clinical pharmacology of nonsteroidal anti-inflammatory drugs in dogs. Vet Anaesth Analg 2012; 39: 69-90. https://doi.org/10.1111/j.1467-2995.2011.00675.x
  18. Lee MI, Kim JH, Kwak HH, Woo HM, Han JH, Yayon A, et al. A placebo-controlled study comparing the efficacy of intra-articular injections of hyaluronic acid and a novel hyaluronic acid-platelet-rich plasma conjugate in a canine model of osteoarthritis. J Orthop Surg Res 2019; 14: 314. https://doi.org/10.1186/s13018-019-1352-1
  19. Lories RJ, Luyten FP. The bone-cartilage unit in osteoarthritis. Nat Rev Rheumatol 2011; 7: 43-49. https://doi.org/10.1038/nrrheum.2010.197
  20. Luna SP, Basilio AC, Steagall PV, Machado LP, Moutinho FQ, Takahira RK, et al. Evaluation of adverse effects of long-term oral administration of carprofen, etodolac, flunixin meglumine, ketoprofen, and meloxicam in dogs. Am J Vet Res 2007; 68: 258-264. https://doi.org/10.2460/ajvr.68.3.258
  21. Maitre P, Arnault A, Verset M, Roger T, Viguier E. Chronic cranial cruciate ligament rupture in dog: four legs assessment with a walkway. Comput Methods Biomech Biomed Eng 2007; 10(Suppl 1): 111-112.
  22. Mobasheri A, Henrotin Y. Identification, validation and qualification of biomarkers for osteoarthritis in humans and companion animals: mission for the next decade. Vet J 2010; 185: 95-97. https://doi.org/10.1016/j.tvjl.2010.05.026
  23. Moldovan F, Pelletier JP, Hambor J, Cloutier JM, Martel-Pelletier J. Collagenase-3 (matrix metalloprotease 13) is preferentially localized in the deep layer of human arthritic cartilage in situ: in vitro mimicking effect by transforming growth factor beta. Arthritis Rheum 1997; 40: 1653-1661. https://doi.org/10.1002/art.1780400915
  24. Mu W, Xu B, Ma H, Ji B, Zhang Z, Li J, et al. Halofuginone attenuates articular cartilage degeneration by inhibition of elevated TGF-β1 signaling in articular cartilage in a rodent osteoarthritis model. Mol Med Rep 2017; 16: 7679-7684. https://doi.org/10.3892/mmr.2017.7549
  25. Neumann S, Lauenstein-Bosse S. Evaluation of transforming growth factor beta 1 in dogs with osteoarthritis. Open Vet J 2018; 8: 386-392. https://doi.org/10.4314/ovj.v8i4.6
  26. Ping SH, Tian FM, Liu H, Sun Q, Shao LT, Lian QQ, et al. Raloxifene inhibits the overexpression of TGF-β1 in cartilage and regulates the metabolism of subchondral bone in rats with osteoporotic osteoarthritis. Bosn J Basic Med Sci 2021; 21: 284-293.
  27. Pombo-Suarez M, Castano-Oreja MT, Calaza M, Gomez-Reino J, Gonzalez A. Differential upregulation of the three transforming growth factor beta isoforms in human osteoarthritic cartilage. Ann Rheum Dis 2009; 68: 568-571. https://doi.org/10.1136/ard.2008.090217
  28. Redini F, Mauviel A, Pronost S, Loyau G, Pujol JP. Transforming growth factor beta exerts opposite effects from interleukin-1 beta on cultured rabbit articular chondrocytes through reduction of interleukin-1 receptor expression. Arthritis Rheum 1993; 36: 44-50. https://doi.org/10.1002/art.1780360108
  29. van der Kraan PM. The changing role of TGFβ in healthy, ageing and osteoarthritic joints. Nat Rev Rheumatol 2017; 13: 155-163. https://doi.org/10.1038/nrrheum.2016.219
  30. van der Kraan PM, Goumans MJ, Blaney Davidson E, ten Dijke P. Age-dependent alteration of TGF-β signalling in osteoarthritis. Cell Tissue Res 2012; 347: 257-265. https://doi.org/10.1007/s00441-011-1194-6
  31. Waxman AS, Robinson DA, Evans RB, Hulse DA, Innes JF, Conzemius MG. Relationship between objective and subjective assessment of limb function in normal dogs with an experimentally induced lameness. Vet Surg 2008; 37: 241-246. https://doi.org/10.1111/j.1532-950X.2008.00372.x
  32. Webster RP, Anderson GI, Gearing DP. Canine Brief Pain Inventory scores for dogs with osteoarthritis before and after administration of a monoclonal antibody against nerve growth factor. Am J Vet Res 2014; 75: 532-535. https://doi.org/10.2460/ajvr.75.6.532
  33. Wen ZH, Tang CC, Chang YC, Huang SY, Lin YY, Hsieh SP, et al. Calcitonin attenuates cartilage degeneration and nociception in an experimental rat model of osteoarthritis: role of TGF-β in chondrocytes. Sci Rep 2016; 6: 28862. https://doi.org/10.1038/srep28862
  34. Yaeger PC, Masi TL, de Ortiz JL, Binette F, Tubo R, McPherson JM. Synergistic action of transforming growth factor-beta and insulin-like growth factor-I induces expression of type II collagen and aggrecan genes in adult human articular chondrocytes. Exp Cell Res 1997; 237: 318-325. https://doi.org/10.1006/excr.1997.3781
  35. Zhang RK, Li GW, Zeng C, Lin CX, Huang LS, Huang GX, et al. Mechanical stress contributes to osteoarthritis development through the activation of transforming growth factor beta 1 (TGF-β1). Bone Joint Res 2018; 7: 587-594. https://doi.org/10.1302/2046-3758.711.BJR-2018-0057.R1
  36. Zhen G, Cao X. Targeting TGFβ signaling in subchondral bone and articular cartilage homeostasis. Trends Pharmacol Sci 2014; 35: 227-236. https://doi.org/10.1016/j.tips.2014.03.005