DOI QR코드

DOI QR Code

Validity assessment of a single tooth model in clenching and chewing simulations

  • Lee, Yeokyeong (Department of Mechanical and Biomedical Engineering, Ewha Womans University) ;
  • Kim, Minji (Department of Orthodontics, College of Medicine, Ewha Womans University) ;
  • Park, Ji-Man (Department of Prosthodontics, Yonsei University College of Dentistry) ;
  • Kim, Hee Sun (Department of Architectural and Urban Systems Engineering, Ewha Womans University)
  • Received : 2021.02.18
  • Accepted : 2021.06.28
  • Published : 2021.07.25

Abstract

Single tooth finite element model is widely used to investigate tooth behaviors with reducing modeling process and computational time. This study aims to examine the validity of a single tooth model in clenching and chewing actions. The single tooth model consisting of tooth #16, the periodontal ligament (PDL), and bone was subjected to coronal-apical movements. The predicted strains from the analyses were validated with the in-vitro experimental results on tooth-PDL-bone specimen. The stress distributions of tooth root and PDL were compared to those from the full skull model to evaluate reasonability of the single tooth model. The results of this study indicate that the single tooth model is able to predict valid structural and mechanical behaviors in clenching and chewing activities.

Keywords

Acknowledgement

The research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2018R1D1A1A2085366).

References

  1. ABAQUS Documentation (2013), Abaqus Analysis User's Manual, Dassault Systemes, Troy, MI, U.S.A.
  2. Benazzi, S., Kullmer, O., Grosse, I.R. and Weber, G.W. (2011), "Using occlusal wear information and finite element analysis to investigate stress distributions in human molars", J. Anat., 219(3), 259-272. https://doi.org/10.1111/j.1469-7580.2011.01396.x.
  3. Bola, A.M., Ramos, A. and Simoes, J.A. (2016), "Sensitivity analysis for finite element modeling of humeral bone and cartilage", Biomat. Biomech. Bioeng., 3(2), 71-84. http://dx.doi.org/10.12989/bme.2016.3.2.071.
  4. Boryor, A., Geiger, M., Hohmann, A., Wunderlich, A., Sander, C., Sander, F.M. and Sander, F.G. (2008), "Stress distribution and displacement analysis during an intermaxillary disjunction - a three-dimensional FEM study of a human skull", J. Biomech., 41(2), 376-382. https://doi.org/10.1016/j.jbiomech.2007.08.016.
  5. Bujtar, P., Sandor, G.K., Bojtos, A., Szucs, A. and Barabas, J. (2010), "Finite element analysis of the human mandible at 3 different stages of life", Oral Surg., Oral Med., Oral Pathol., Oral Radiol., Endodontol., 110(3), 301-309. https://doi.org/10.1016/j.tripleo.2010.01.025.
  6. Chaichanasiri, E., Nanakorn, P., Tharanon, W. and Vander Sloten, J. (2009), "A finite element study of the effect of contact forces between an implant-retained crown and its adjacent teeth on bone stresses", J. Mech., 25(4), 441-450. https://doi.org/10.1017/S1727719100002926.
  7. Choy, K., Pae, E.K., Park, Y., Kim, K.H. and Burstone, C.J. (2000), "Effect of root and bone morphology on the stress distribution in the periodontal ligament", Am. J. Orthod. Dentofac. Orthop., 117(1), 98-105. https://doi.org/10.1016/S0889-5406(00)70254-X.
  8. Choy, S.E.M., Lenz, J., Schweizerhof, K., Schmitter, M. and Schindler, H.J. (2017), "Realistic kinetic loading of the jaw system during single chewing cycles: a finite element study", J. Oral Rehabil., 44(5), 375-384. https://doi.org/10.1111/joor.12501.
  9. Commisso, M.S., Martinez-Reina, J., Ojeda, J. and Mayo, J. (2015), "Finite element analysis of the human mastication cycle", J. Mech. Behav. Biomed. Mater., 41, 23-35. https://doi.org/10.1016/j.jmbbm.2014.09.022.
  10. De Santis, R., Ambrosio, L. and Nicolais, L. (2002), Mechanical Properties of Tooth Structures, In: Integrated Biomaterials Science, Springer, Boston, MA, USA.
  11. Dechaumphai, P., Phongthanapanich, S. and Bhandhubanyong, P. (2003), "Adaptive finite elements by Delaunay triangulation for fracture analysis of cracks", Struct. Eng. Mech., 15(5), 563-578. http://dx.doi.org/10.12989/sem.2003.15.5.563.
  12. Du, J.K., Lin, W.K., Wang, C.H., Lee, H.E., Li, H.Y. and Wu, J.H. (2011), "FEM analysis of the mandibular first premolar with different post diameters", Odontol., 99(2), 148-154. https://doi.org/10.1007/s10266-011-0011-8.
  13. El Sallah, Z.M., Ali, B. and Abderahmen, S. (2020), "Effect of force during strumbling of the femur fracture with a different ce-mented total hip prosthesis", Biomat. Biomech. Bioeng., 5(1), 11-23. https://doi.org/10.12989/bme.2020.5.1.011.
  14. Field, C., Ichim, I., Swain, M.V., Chan, E., Darendeliler, M.A., Li, W. and Li, Q. (2009), "Mechanical responses to orthodontic loading: a 3-dimensional finite element multi-tooth model", Am. J. Orthod. Dentofac. Orthop., 135(2), 174-181. https://doi.org/10.1016/j.ajodo.2007.03.032.
  15. Helkimo, E., Carlsson, G.E. and Helkimo, M. (1977), "Bite force and state of dentition", Acta. Odontol. Scand., 35(6), 297-303. https://doi.org/10.3109/00016357709064128.
  16. Hohmann, A., Kober, C., Young, P., Dorow, C., Geiger, M., Boryor, A., Sander, F.M., Sander, C. and Sander, F.G. (2011), "Influence of different modeling strategies for the periodontal ligament on finite element simulation results", Am. J. Orthod. Dentofac. Orthop., 139(60), 775-783. https://doi.org/10.1016/j.ajodo.2009.11.014.
  17. Kim, H.S., Park, J.Y., Kim, N.E., Shin, Y.S., Park, J.M. and Chun, Y.S. (2012), "Finite element modeling technique for predicting mechanical behaviors on mandible bone during mastication", J. Adv. Prosthod., 4(4), 218-226. http://dx.doi.org/10.4047/jap.2012.4.4.218.
  18. Kinney, J.H., Habelitz, S., Marshall, S.J. and Marshall, G.W. (2003), "The importance of intrafibrillar mineralization of collagen on the mechanical properties of dentin", J. Dent. Res., 82(12), 957-961. https://doi.org/10.1177/154405910308201204.
  19. Kojima, Y. and Fukui, H. (2006), "A numerical simulation of tooth movement by wire bending", Am. J. Orthod. Dentofac. Orthop., 130(4), 452-459. https://doi.org/10.1016/j.ajodo.2005.01.028.
  20. Lee, Y.K. and Chun, Y.S. (2020), "An investigation into structural behaviors of skulls chewing food in different occlusal relationships using FEM", Clin. Exp. Dent. Res., 6(3), 277-285. https://doi.org/10.1002/cre2.273.
  21. Lee, Y.K., Kim, H.S. and Park, J.Y. (2017), "The case study of masticatory force with food from full skull and partial model", Int. J. Precis. Eng. Manuf., 18(10), 1455-1462. https://doi.org/10.1007/s12541-017-0173-6.
  22. Mahoney, E., Holt, A., Swain, M. and Kilpatrick, N. (2000), "The hardness and modulus of elasticity of primary molar teeth: an ultra-micro-indentation study", J. Dent., 28(8), 589-594. https://doi.org/10.1016/S0300-5712(00)00043-9.
  23. Martinez Choy, S.E., Lenz, J., Schweizerhof, K., Schmitter, M. and Schindler, H.J. (2017), "Realistic kinetic loading of the jaw system during single chewing cycles: a finite element study", J. Oral Rehabil., 44(5), 375-384. https://doi.org/10.1111/joor.12501.
  24. Merdji, A., Mootanah, R., Bouiadjra, B.A.B., Benaissa, A., Aminallah, L. and Mukdadi, S. (2013), "Stress analysis in single molar tooth", Mater. Sci. Eng. Civil, 33(2), 691-698. https://doi.org/10.1016/j.msec.2012.10.020.
  25. Middleton, J., Jones, M. and Wilson, A. (1996), "The role of the periodontal ligament in bone modeling: the initial development of a time-dependent finite element model", Am. J. Orthod. Dentofac. Orthop., 109(2), 155-162. https://doi.org/10.1016/S0889-5406(96)70176-2.
  26. Mobasseri, S., Sadeghi, M., Janghorban, M. and Tounsi, A. (2020), "Approximated 3D non-homogeneous model for the buckling and vibration analysis of femur bone with femoral defects", Biomat. Biomech. Bioeng., 5(1), 25-35. https://doi.org/10.12989/bme.2020.5.1.025.
  27. Mohamed, C., Abderahmane, S. and Benbarek, S. (2018), "Fracture behavior modeling of a 3D crack emanated from bony inclusion in the cement PMMA of total hip replacement", Struct. Eng. Mech., 66(1), 37-43. https://doi.org/10.12989/sem.2018.66.1.037.
  28. Motoyoshi, M., Hirabayashi, M., Shimazaki, T. and Namura, S. (2002), "An experimental study on mandibular expansion: increases in arch width and perimeter", Eur. J. Orthod., 24(2), 125-130. https://doi.org/10.1093/ejo/24.2.125.
  29. Nakhli, Z., Hatira, F.B., Pithioux, M., Chabrand, P. and Saanouni, K. (2019), "Femoral Fracture load and damage localization pattern prediction based on a quasi-brittle law", Struct. Eng. Mech., 72(1), 000-000. https://doi.org/10.12989/sem.2019.72.1.000.
  30. Natali, A.N. (2003), Dental Biomechanics, Taylor & Francis, CRC Press, London, U.K.
  31. Natali, A.N., Pavan, P.G. and Scarpa, C. (2004), "Numerical analysis of tooth mobility: formulation of a non-linear constitutive law for the periodontal ligament", Dent. Mater., 20(7), 623-629. https://doi.org/10.1016/j.dental.2003.08.003.
  32. Nevah, G.S.R., Chattah, N.L.T., Zaslansky, P., Shahar, R. and Weiner, S. (2012), "Tooth-PDL-bone complex: Response to compressive loads encountered during mastication - A reviews", Arch. Oral Biol., 57(12), 1575-1584. https://doi.org/10.1016/j.archoralbio.2012.07.006.
  33. Omori, K., Arikawa, H. and Inoue, K. (2001), "An evaluation of elastomeric impression materials based on surface compressive strength", J. Oral Rehabil., 28(4), 320-327. https://doi.org/10.1046/j.1365-2842.2001.00660.x.
  34. Ona, M. and Wakabayashi, N. (2006), "Influence of alveolar support on stress in periodontal structures", J. Dental Res., 85(12), 1087-1091. https://doi.org/10.1177/154405910608501204.
  35. Panagiotopoulou, O., Kupczik, K. and Cobb, S.N. (2011), "The mechanical function of the periodontal ligament in the macaque mandible: a validation and sensitivity study using finite element analysis", J. Anat., 218(1), 75-86. https://doi.org/10.1111/j.1469-7580.2010.01257.x.
  36. Poiate, I.A.V.P., de Vasconcellos, A.B., de Santana, R.B. and Poiate, Jr E. (2009), "Three-dimensional stress distribution in the human periodontal ligament in masticatory, parafunctional, and trauma loads: finite element analysis", J. Periodontol., 80(11), 1859-1867. https://doi.org/10.1902/jop.2009.090220.
  37. Ryou, H., Niu, L.N., Dai, L., Pucci, C.R., Arola, D.D., Pashley, D.H. and Tay, F.R. (2011), "Effect of biomimetic remineralization on the dynamic nanomechanical properties of dentin hybrid layers", J. Dent. Res., 90(9), 1122-1128. https://doi.org/10.1177/0022034511414059.
  38. Shewchuk, J.R. (2002), "Delaunay refinement algorithms for triangular mesh generation", Comput. Geom., 22(1-3), 21-74. https://doi.org/10.1016/S0925-7721(01)00047-5.
  39. Sonnesen, L. and Bakke, M. (2005), "Molar bite force in relation to occlusion, craniofacial dimensions, and head posture in pre-orthodontic children", Eur. J. Orthod., 27(1), 58-63. https://doi.org/10.1093/ejo/cjh069.
  40. Sultana, M.H., Yamada, K. and Hanada, K. (2002), "Changes in occlusal force and occlusal contact area after active orthodontic treatment: a pilot study using pressure-sensitive sheets", J. Oral Rehabil., 29(5), 484-491. https://doi.org/10.1046/j.1365-2842.2002.00849.x.
  41. Viecilli, R.F., Katona, T.R., Chen, J., Hartsfield, Jr J.K. and Roberts, W.E. (2008), "Three-dimensional mechanical environment of orthodontic tooth movement and root resorption", Am. J. Orthod. Dentofac. Orthop., 133(6), 791-e11. https://doi.org/10.1016/j.ajodo.2007.11.023.
  42. Vikram, N.R., Kumar, K.S., Nagachandran, K.S. and Hashir, Y.M. (2012), "Apical stress distribution on maxillary central incisor during various orthodontic tooth movements by varying cemental and two different periodontal ligament thicknesses: a FEM study", Indian J. Dent. Res., 23(2), 213-220. https://doi.org/10.4103/0970-9290.100429.
  43. Wierszycki, M., Kakol, W. and Lodygowski, T. (2006), "The screw loosening and fatigue analyses of three dimensional dental implant model", 2006 ABAQUS Users' Conference (Vol. 15), Providence, RI, U.S.A, May.
  44. Zhao, B., Hu, J., Chen, W., Chen, J. and Jing, Z. (2020), "A nonlinear uniaxial stress-strain constitutive model for viscoelastic membrane materials", Polym. Test., 90, 106633. https://doi.org/10.1016/j.polymertesting.2020.106633.
  45. Zheng, J., Zhou, Z.R., Zhang, J., Li, H. and Yu, H.Y. (2003), "On the friction and wear behaviour of human tooth enamel and dentin", Wear, 255(7-12), 967-974. https://doi.org/10.1016/S0043-1648(03)00079-6.