DOI QR코드

DOI QR Code

Mechanical behavior of RC cantilever beams strengthened with FRP laminate plate

  • Received : 2020.06.10
  • Accepted : 2021.06.03
  • Published : 2021.07.25

Abstract

In this paper, an analytical interfacial stress analysis is presented for simply supported concrete cantilever beam bonded with a composite plate. The adherend shear deformations have been included in the present analyses by assuming a linear shear stress through the thickness of the adherends, one of the strong points of this model; this shear parameter has not been taken up by other researchers. Remarkable effect of shear deformations of adherends has been noted in the results. Indeed, the resulting interfacial stresses concentrations are considerably smaller than those obtained by other models which neglect adherent shear deformations. It is shown that both the normal and shear stresses at the interface are influenced by the material and geometry parameters of the composite beam. The theoretical predictions are compared with other existing solutions. This type of research is very useful for structural calculating engineers who are always looking to optimize strengthening design parameters and implement reliable debonding prevention measures.

Keywords

Acknowledgement

This research was supported by the Algerian Ministry of Higher Education and Scientific Research (MESRS) as part of the grant for the PRFU research project n° A01L02UN140120200002 and by the University of Tiaret, in Algeria.

References

  1. Abdelhak, Z., Hadji, L., Daouadji, T.H. and Adda Bedia, E.A. (2016), "Thermal buckling response of functionally graded sandwich plates with clamped boundary conditions", Smart Struct. Syst., 18(2), 267-291. https://doi.org/10.12989/sss.2016.18.2.267.
  2. Abdelouahed, T. (2006), "Improved theoretical solution for interfacial stresses in concrete beams strengthened with FRP plate", Int. J. Solids Struct., 43(14-15), 4154-4174. https://doi.org/10.1016/j.ijsolstr.2005.03.074.
  3. Abderezak, R., Daouadji, T.H. and Rabia, B. (2020), "Analysis of interfacial stresses of the reinforced concrete foundation beams repairing with composite materials plate", Coupled Syst. Mech., 9(5), 473-498. http://dx.doi.org/10.12989/csm.2020.9.5.473.
  4. Abderezak, R., Daouadji, T.H. and Rabia, B. (2021), "Aluminum beam reinforced by externally bonded composite materials", Advan. Mater. Res., 10(1), 23-44. http://dx.doi.org/10.12989/amr.2021.10.1.023.
  5. Abderezak, R., Daouadji, T.H. and Rabia, B. (2021), "Aluminum beam reinforced by externally bonded composite materials", Advan. Mater. Res., 10(1), 23. http://dx.doi.org/10.12989/amr.2020.9.4.265.
  6. Abderezak, R., Daouadji, T.H. and Rabia, B. (2021), "Modeling and analysis of the imperfect FGM-damaged RC hybrid beams", 1, 6(2), 117. http://dx.doi.org/10.12989/acd.2021.6.2.117
  7. Abderezak, R., Daouadji, T.H., Abbes, B., Rabia, B., Belkacem, A. and Abbes, F. (2017), "Elastic analysis of interfacial stress concentrations in CFRP-RC hybrid beams: Effect of creep and shrinkage", Advan. Mater. Res., 6(3), 257. https://doi.org/10.12989/amr.2017.6.3.257.
  8. Abderezak, R., Daouadji, T.H., Rabia, B. and Belkacem, A. (2018), "Nonlinear analysis of damaged RC beams strengthened with glass fiber reinforced polymer plate under symmetric loads", Earthq. Struct., 15(2), 113-122. https://doi.org/10.12989/eas.2018.15.2.113.
  9. Abderezak, R., Rabia, B., Daouadji, T.H., Abbes, B., Belkacem, A. and Abbes, F. (2018), "Elastic analysis of interfacial stresses in prestressed PFGM-RC hybrid beams", Advan. Mater. Res., 7(2), 83. https://doi.org/10.12989/amr.2018.7.2.083.
  10. Adim, B. and Daouadji, T.H. (2016), "Effects of thickness stretching in FGM plates using a quasi-3D higher order shear deformation theory", Advan. Mater. Res., 5(4), 223. https://doi.org/10.12989/amr.2016.5.4.223.
  11. Adim, B., Daouadji, T.H. and Abbes, B. (2016), "Buckling analysis of anti-symmetric cross-ply laminated composite plates under different boundary conditions", Int. Appl. Mech., 52(6), 661-676. https://doi.org/10.1007/s10778-016-0787-x
  12. Adim, B., Daouadji, T.H., Abbes, B. and Rabahi, A. (2016), "Buckling and free vibration analysis of laminated composite plates using an efficient and simple higher order shear deformation theory", Mech. Ind., 17(5), 512. https://doi.org/10.1051/meca/2015112.
  13. Adim, B., Daouadji, T.H., Rabia, B. and Hadji, L. (2016), "An efficient and simple higher order shear deformation theory for bending analysis of composite plates under various boundary conditions", Earthq. Struct., 11(1), 63-82. https://doi.org/10.12989/eas.2016.11.1.063.
  14. Aicha, K., Rabia, B., Daouadji, T.H. and Bouzidene, A. (2020), "Effect of porosity distribution rate for bending analysis of imperfect FGM plates resting on Winkler-Pasternak foundations under various boundary conditions", Coupled Syst. Mech., 9(6), 575-597. http://dx.doi.org/10.12989/csm.2020.9.6.575.
  15. Alam, M.A. and Al Riyami, K. (2018), "Shear strengthening of reinforced concrete beam using natural fibre reinforced polymer laminates", Construct. Build. Mater., 162, 683-696. https://doi.org/10.1016/j.conbuildmat.2017.12.011.
  16. AlSaid-Alwan, H.H.S. and Avcar, M. (2020), "Analytical solution of free vibration of FG beam utilizing different types of beam theories: A comparative study", Comput. Concrete, 26(3), 285-292. http://dx.doi.org/10.12989/cac.2020.26.3.285.
  17. Batou, B., Nebab, M., Bennai, R., Atmane, H.A., Tounsi, A. and Bouremana, M. (2019), "Wave dispersion properties in imperfect sigmoid plates using various HSDTs", Steel Compos. Struct., 33(5), 699-716. https://doi.org/10.12989/scs.2019.33.5.699.
  18. Belkacem, A., Tahar, H.D., Abderrezak, R., Amine, B.M., Mohamed, Z. and Boussad, A. (2018), "Mechanical buckling analysis of hybrid laminated composite plates under different boundary conditions", Struct. Eng. Mech., 66(6), 761-769. https://doi.org/10.12989/sem.2018.66.6.761.
  19. Bendada, A., Boutchicha, D., Khatir, S., Magagnini, E., Capozucca, R. and Abdel Wahab, M. (2020), "Mechanical characterization of an epoxy panel reinforced by date palm petiole particle", Steel Compos. Struct., 35(5), 627-634. https://doi.org/10.12989/scs.2020.35.5.627.
  20. Benferhat, R., Daouadji, T.H. and Mansour, M.S. (2016), "Free vibration analysis of FG plates resting on an elastic foundation and based on the neutral surface concept using higher-order shear deformation theory", Comptes Rendus Mecanique, 344(9), 631-641. https://doi.org/10.1016/j.crme.2016.03.002.
  21. Benferhat, R., Daouadji, T.H., Mansour, M.S. and Hadji, L. (2016), "Effect of porosity on the bending and free vibration response of functionally graded plates resting on Winkler-Pasternak foundations", Earthq. Struct., 10(6), 1429-1449. https://doi.org/10.12989/eas.2016.10.6.1429.
  22. Benferhat, R., Hassaine Daouadji, T. and Rabahi, A. (2021a), "Effect of porosity on fundamental frequencies of FGM sandwich plates", Compos. Mater. Eng., 3(1), 25-40. http://dx.doi.org/10.12989/cme.2021.3.1.025.
  23. Benferhat, R., Hassaine Daouadji, T. and Rabahi, A. (2021b), "Effect of air bubbles in concrete on the mechanical behavior of RC beams strengthened in flexion by externally bonded FRP plates under uniformly distributed loading", Compos. Mater. Eng., 3(1), 41-55. http://dx.doi.org/10.12989/cme.2021.3.1.041.
  24. Benhenni, M.A., Daouadji, T.H., Abbes, B., Abbes, F., Li, Y. and Adim, B. (2019), "Numerical analysis for free vibration of hybrid laminated composite plates for different boundary conditions", Struct. Eng. Mech., 70(5), 535-549. https://doi.org/10.12989/sem.2019.70.5.535.
  25. Benhenni, M.A., Daouadji, T.H., Abbes, B., Adim, B., Li, Y. and Abbes, F. (2018), "Dynamic analysis for anti-symmetric cross-ply and angle-ply laminates for simply supported thick hybrid rectangular plates", Advan. Mater. Res., 7(2), 119. https://doi.org/10.12989/amr.2018.7.2.119.
  26. Bensattalah, T., Daouadji, T.H. and Zidour, M. (2019), "Influences the Shape of the Floor on the Behavior of Buildings Under Seismic Effect", In International Symposium on Materials and Sustainable Development, Springer, Cham. https://doi.org/10.1007/978-3-030-43268-3_3.
  27. Bensattalah, T., Zidour, M. and Daouadji, T.H. (2018), "Analytical analysis for the forced vibration of CNT surrounding elastic medium including thermal effect using nonlocal Euler-Bernoulli theory", Advan. Mater. Res., 7(3), 163-174. https://doi.org/10.12989/amr.2018.7.3.163.
  28. Benyoucef, S., Tounsi, A., Meftah, S.A. and Adda-Bedia, E.A. (2006), "Approximate analysis of the interfacial stress concentrations in FRP-RC hybrid beams", Compos. Interf., 13(7), 561-571. https://doi.org/10.1163/156855406778440758.
  29. Chedad, A., Daouadji, T.H., Abderezak, R., Belkacem, A., Abbes, B., Rabia, B. and Abbes, F. (2017), "A high-order closed-form solution for interfacial stresses in externally sandwich FGM plated RC beams", Advan. Mater. Res., 6(4), 317. https://doi.org/10.12989/amr.2017.6.4.317.
  30. Chergui, S., Daouadji, T.H., Hamrat, M., Boulekbache, B., Bougara, A., Abbes, B. and Amziane, S. (2019), "Interfacial stresses in damaged RC beams strengthened by externally bonded prestressed GFRP laminate plate: Analytical and numerical study", Advan. Mater. Res., 8(3), 197-217. https://doi.org/10.12989/amr.2019.8.3.197.
  31. Daouadji, H.T., Benyoucef, S., Tounsi, A., Benrahou, K.H. and Bedia, A.E. (2008), "Interfacial stress concentrations in FRP-damaged RC hybrid beams", Compos. Interfaces, 15(4), 425-440. https://doi.org/10.1163/156855408784514702.
  32. Daouadji, T.H. (2013), "Analytical analysis of the interfacial stress in damaged reinforced concrete beams strengthened by bonded composite plates", Strength Mater., 45(5), 587-597. https://doi.org/10.1007/s11223-013-9496-4.
  33. Daouadji, T.H. (2017), "Analytical and numerical modeling of interfacial stresses in beams bonded with a thin plate", Advan. Comput. Design, 2(1), 57-69. https://doi.org/10.12989/acd.2017.2.1.057.
  34. Daouadji, T.H., Chedad, A. and Adim, B. (2016), "Interfacial stresses in RC beam bonded with a functionally graded material plate", Struct. Eng. Mech., 60(4), 693-705. http://dx.doi.org/10.12989/sem.2016.60.4.693.
  35. Daouadji, T.H., Rabahi, A., Abbes, B. and Adim, B. (2016), "Theoretical and finite element studies of interfacial stresses in reinforced concrete beams strengthened by externally FRP laminates plate", J. Adhesion Sci. Technol., 30(12), 1253-1280. https://doi.org/10.1080/01694243.2016.1140703.
  36. Guenaneche, B. and Tounsi, A. (2014), "Effect of shear deformation on interfacial stress analysis in plated beams under arbitrary loading", Int. J. Adhesion Adhesives, 48, 1-13. https://doi.org/10.1016/j.ijadhadh.2013.09.016.
  37. Hadj, B., Rabia, B. and Daouadji, T.H. (2019), "Influence of the distribution shape of porosity on the bending FGM new plate model resting on elastic foundations", Struct. Eng. Mech., 72(1), 61-70. https://doi.org/10.12989/sem.2019.72.1.061.
  38. Hadj, B., Rabia, B. and Daouadji, T.H. (2021), "Vibration analysis of porous FGM plate resting on elastic foundations: effect of the distribution shape of porosity", Coupled Syst. Mech., 10(1), 61-77 http://dx.doi.org/10.12989/csm.2021.10.1.061
  39. Hamrat, M., Bouziadi, F., Boulekbache, B., Daouadji, T.H., Chergui, S., Labed, A. and Amziane, S. (2020), "Experimental and numerical investigation on the deflection behavior of pre-cracked and repaired reinforced concrete beams with fiber-reinforced polymer", Construct. Build. Mater., 249, 118745. http://dx.doi.org/10.1016/j.conbuildmat.2020.118745.
  40. He, X.J., Zhou, C.Y. and Wang, Y. (2020), "Interfacial stresses in reinforced concrete cantilever members strengthened with fibre-reinforced polymer laminates", Advan. Struct. Eng., 23(2), 277-288. https://doi.org/10.1177/1369433219868933.
  41. Krour, B., Bernard, F. and Tounsi, A. (2013), "Fibers orientation optimization for concrete beam strengthened with a CFRP bonded plate: A coupled analytical-numerical investigation", Eng. Struct., 56, 218-227. https://doi.org/10.1016/j.engstruct.2013.05.008.
  42. Larrinaga, P., Garmendia, L., Pinero, I. and San-Jose, J.T. (2020), "Flexural strengthening of low-grade reinforced concrete beams with compatible composite material: Steel Reinforced Grout (SRG)", Construct. Build. Mater., 235, 117790. https://doi.org/10.1016/j.conbuildmat.2019.117790.
  43. Liu, S., Zhou, Y., Zheng, Q., Zhou, J., Jin, F. and Fan, H. (2019), "Blast responses of concrete beams reinforced with steel-GFRP composite bars", In Structures, Elsevier. https://doi.org/10.1016/j.istruc.2019.08.010.
  44. Mahi, B.E., Benrahou, K.H., Belakhdar, K., Tounsi, A. and Bedia, E.A. (2014), "Effect of the tapered end of a FRP plate on the interfacial stresses in a strengthened beam used in civil engineering applications", Mech. Compos. Mater., 50(4), 467-476. https://doi.org/10.1007/s11029-014-9433-z.
  45. Panjehpour, M., Ali, A.A.A., Voo, Y.L. and Aznieta, F.N. (2014), "Effective compressive strength of strut in CFRP-strengthened reinforced concrete deep beams following ACI 318-11", Comput. Concrete, 13(1), 135-147. https://doi.org/10.12989/cac.2014.13.1.135.
  46. Panjehpour, M., Farzadnia, N., Demirboga, R. and Ali, A.A.A. (2016), "Behavior of high-strength concrete cylinders repaired with CFRP sheets", J. Civil Eng. Manage., 22(1), 56-64. https://doi.org/10.3846/13923730.2014.897965.
  47. Rabahi, A., Daouadji, T.H., Abbes, B. and Adim, B. (2016), "Analytical and numerical solution of the interfacial stress in reinforced-concrete beams reinforced with bonded prestressed composite plate", J. Reinforce. Plastics Compos., 35(3), 258-272. https://doi.org/10.1177/0731684415613633.
  48. Rabia, B., Abderezak, R., Daouadji, T.H., Abbes, B., Belkacem, A. and Abbes, F. (2018), "Analytical analysis of the interfacial shear stress in RC beams strengthened with prestressed exponentially-varying properties plate", Advan. Mater. Res., 7(1), 29. https://doi.org/10.12989/amr.2018.7.1.029.
  49. Rabia, B., Daouadji, T. H. and Abderezak, R. (2019), "Effect of porosity in interfacial stress analysis of perfect FGM beams reinforced with a porous functionally graded materials plate", Struct. Eng. Mech., 72(3), 293-304. https://doi.org/10.12989/sem.2019.72.3.293.
  50. Rabia, B., Daouadji, T.H. and Abderezak, R. (2019), "Effect of distribution shape of the porosity on the interfacial stresses of the FGM beam strengthened with FRP plate", Earthq. Struct., 16(5), 601-609. https://doi.org/10.12989/eas.2019.16.5.601
  51. Rabia, B., Tahar, H.D. and Abderezak, R. (2020), "Thermo-mechanical behavior of porous FG plate resting on the Winkler-Pasternak foundation", Coupled. Syst. Mech., 9(6), 499-519. http://dx.doi.org/10.12989/csm.2020.9.6.499.
  52. Salah, F., Boucham, B., Bourada, F., Benzair, A., Bousahla, A.A. and Tounsi, A. (2019), "Investigation of thermal buckling properties of ceramic-metal FGM sandwich plates using 2D integral plate model", Steel Compos. Struct., 33(6), 805-822. https://doi.org/10.12989/scs.2019.33.6.805.
  53. Smith, S.T. and Teng, J.G. (2001), "Interfacial stresses in plated beams", Eng. Struct., 23(7), 857-871. http://dx.doi.org/10.1016/S0141-0296(00)00090-0.
  54. Tahar, H.D., Abderezak, R. and Rabia, B. (2020), "Flexural performance of wooden beams strengthened by composite plate", Struct. Monit. Maintain, 7(3), 233-259. http://dx.doi.org/10.12989/smm.2020.7.3.233.
  55. Tahar, H.D., Boussad, A., Abderezak, R., Rabia, B., Fazilay, A. and Belkacem, A. (2019), "Flexural behaviour of steel beams reinforced by carbon fibre reinforced polymer: Experimental and numerical study", Struct. Eng. Mech., 72(4), 409-420. https://doi.org/10.12989/sem.2019.72.4.409.
  56. Tahar, H.D., Tayeb, B., Abderezak, R. and Tounsi, A. (2021), "New approach of composite wooden beamreinforced concrete slab strengthened by external bonding of prestressed composite plate: Analysis and modeling", Struct. Eng. Mech., 78(3), 319-332. http://dx.doi.org/10.12989/sem.2021.78.3.31.
  57. Tayeb, B. and Daouadji, T.H. (2020), "Improved analytical solution for slip and interfacial stress in composite steel-concrete beam bonded with an adhesive", Advan. Mater. Res., 9(2), 133-153. https://doi.org/10.12989/amr.2020.9.2.133.
  58. Tlidji, Y., Benferhat, R. and Tahar, H.D. (2021), "Study and analysis of the free vibration for FGM microbeam containing various distribution shape of porosity", Struct. Eng. Mech., 77(2), 217. http://dx.doi.org/10.12989/sem.2021.77.2.217.
  59. Tounsi, A., Daouadji, T.H. and Benyoucef, S. (2009), "Interfacial stresses in FRP-plated RC beams: Effect of adherend shear deformations", Int. J. Adhesion Adhesives, 29(4), 343-351. https://doi.org/10.1016/j.ijadhadh.2008.06.008.
  60. Wang, Y.H., Yu, J., Liu, J.P., Zhou, B.X. and Chen, Y.F. (2020), "Experimental study on assembled monolithic steel-prestressed concrete composite beam in negative moment", J. Construct. Steel Res., 167, 105667. https://doi.org/10.1016/j.jcsr.2019.06.004.
  61. Yang, J. and Wu, Y.F. (2007), "Interfacial stresses of FRP strengthened concrete beams: Effect of shear deformation.", Compos. Struct., 80(3), 343-351. https://doi.org/10.1016/j.compstruct.2006.05.016.
  62. Yaylaci, M. and Avcar, M. (2020), "Finite element modeling of contact between an elastic layer and two elastic quarter planes", Comput. Concrete, 26(2), 107-114. http://dx.doi.org/10.12989/cac.2020.26.2.107.
  63. Yuan, C., Chen, W., Pham, T.M. and Hao, H. (2019), "Effect of aggregate size on bond behaviour between basalt fibre reinforced polymer sheets and concrete", Compos. Part B: Eng., 158, 459-474. https://doi.org/10.1016/j.compositesb.2018.09.089.
  64. Zenzen, R., Khatir, S., Belaidi, I., Le Thanh, C. and Wahab, M.A. (2020), "A modified transmissibility indicator and Artificial Neural Network for damage identification and quantification in laminated composite structures", Compos. Struct., 248, 112497. https://doi.org/10.1016/j.compstruct.2020.112497.
  65. Zohra, A., Benferhat, R., Tahar, H.D. and Tounsi, A. (2021), "Analysis on the buckling of imperfect functionally graded sandwich plates using new modified power-law formulations", Struct. Eng. Mech., 77(6), 797-807. http://dx.doi.org/10.12989/sem.2021.77.6.797.