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Abstract 

 
Since correlation filter appeared in the field of object tracking, it plays an increasingly vital 
role due to its excellent performance. Although many sophisticated trackers have been 
successfully applied to track the object accurately, very few of them attaches importance to the 
scale and rotation estimation. In order to address the above limitation, we propose a novel 
method combined with Fourier-Mellin transform and confidence evaluation strategy for 
robust object tracking. In the first place, we construct a correlation filter to locate the target 
object precisely. Then, a log-polar technique is used in the Fourier-Mellin transform to cope 
with the rotation and scale changes. In order to achieve subpixel accuracy, we come up with an 
efficient surface fitting mechanism to obtain the optimal calculation result. In addition, we 
introduce a confidence evaluation strategy modeled on the output response, which can 
decrease the impact of image noise and perform as a criterion to evaluate the target model 
stability. Experimental experiments on OTB100 demonstrate that the proposed algorithm 
achieves superior capability in success plots and precision plots of OPE, which is 10.8% points 
and 8.6% points than those of KCF. Besides, our method performs favorably against the others 
in terms of SRE and TRE validation schemes, which shows the superiority of our proposed 
algorithm in scale and rotation evaluation. 
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1. Introduction 

Object tracking is one of the most heated topics in computer vision and pattern recognition, 
which has already been widely utilized in various application fields, such as behavior 
recognition, human-computer interaction, surveillance and unmanned driving [1]. Although it 
has scored remarkable progress in the past decades, there still remains a series of challenges 
due to the environmental variation, especially when the target is heavily obscured or 
undergoes scale and rotation changes. 

Recently, a variety of tracking methods have been proposed, and these methods can be 
separated into two main categories: one is the generative approach and the other is the 
discriminative approach. The generative tracking algorithm usually constructs an appearance 
model to depict the target and looks for the object regions with best matching scores [2-4]. 
Unlike the generative model, the discriminative model [5-8] trains a classifier which can 
effectively distinguish between the object and the background. Correlation filters as the 
discriminative approach have achieved a great success in the object tracking community due 
to its rapid speed of calculation and robust tracking performance in recent years.  

Since Bolme et al. introduce MOSSE [9] into visual object tracking field, correlation filter 
algorithms have attracted great attention of researchers due to their splendid tracking 
performance. Henriques et al. introduce the cyclic matrix for object tracking in CSK [10] and 
then improve the KCF [11] tracker by extending the single-channel grayscale feature to a 
HOG-based multidimensional feature, which greatly improves the robustness of the tracking. 
Although the above algorithms achieve great success, few people pay attention to how to 
estimate scale and rotation changes efficiently and accurately. For the purpose of coping with 
the scale changes of the target, Zhang et al. [12] propose a scale update strategy by using the 
generated confidence map in STC. Aiming at the problem of fixed template size in kernel 
correlation filter, Li and Zhu [13] utilize the scale pool method to achieve adaptive tracking of 
target in SAMF. Danelljan et al. [14] raise the DSST tracking algorithm which trains the 
classifier on the scale pyramid to figure out the problem of scale estimation. Unfortunately, 
despite all these methods achieve excellent tracking accuracy, they rarely take the rotation 
changes of the target into account. In addition, they handle the scale changes through learning 
discriminative CF based on a scale pyramid representation, which is limited and insensitive. 

In the visual tracking scene, model drift may appear due to the accumulation of errors, 
which may lead to tracking failure. In order to improve the robustness of tracking,  many 
researchers pay attention to the deep convolutional neural networks (CNN) [15-17] method to 
boost the tracking performance. The HCF [18] extracts the CNN features  which can 
accurately locate the target and contain more semantic information. The is an On the basis of 
SRDCF [19], DeepSRDCF [20] replaces hand-crafted features with CNN features and 
achieves good tracking results. ECO [21] extracts a very comprehensive feature 
(CNN+HOG+CN) and introduces a factorized convolution approach to reduce model 
parameters. Nam et al. [22] propose the MDNet algorithm which uses large-scale video with 
annotated boxes to train CNN to obtain a general feature. SiamFC introduced by Bertinetto [23, 
24] construct a fully convolutional network between the regions and the exemplar image 
which utilizes the mask of the first frame to match the subsequent frames to calculate the 
pixel-level score map. Although convolutional neural network can extract rich information 
features and achieve excellent tracking effect, due to the complexity of deep neural network 
structure, it puts forward higher requirements for GPU and other hardware. 

It is a common situation that object target emerges scale and rotation changes during the 
tracking process. Yin [25] utilize a scale adaptive method to improve the tracking performance 
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and reduce the computational costs. Besides, in the past studies, more consideration has been 
given to the estimation of the scale changes while few of them have been made to analyze the 
rotation motion of the target. Therefore, how to achieve robust object tracking when the target 
has rotation is still a challenging research problem. Furthermore, many algorithms do not 
make reliable judgments on the tracking results and the results of each frame are used to renew 
the model even though the tracking result is prone to drift. Although LMCF [26] put forward 
an approach to prevent model drift through appraising the confidence of the tracking result, it 
can not comprehensively evaluate scale-rotation and translation changes. In the paper [27, 28], 
although the scale estimation problems can be solved by a scale pyramid representation and 
the model drift is overcome by a high-confidence judgement mechanism, the method is limited 
to solve the rotation estimation problems. Based on the above discussion we can see that these 
methods have both advantages and disadvantages. Table 1 summarizes several typical object 
tracking methods. 

 
Table 1. Comparison of characteristics of several object tracking algorithms 

Type Trackers Scale Rotation Confidence GPU 

Correlation filter 

KCF     

DSST     

LMCF     

Deep Learning 

ECO     

MDNet     

SiamFC     

 

To address the above limtations, we propose a valid visual object tracking algorithm FMCS 
to address the challenging problem of scale and rotation changes. As shown in Fig. 1, we can 
see that the tracking target undergoes a posture transformation during movement, and the 
direction of the target on the image plane can be predicted according to the direction 
information of the rotated bounding box. We know that the Fourier-Mellin transform can 
convert the scale and rotation variations of the original image into pure translation on a 
log-polar image, which has been successfully applied in the field of image registration. 
Inspired by this idea, we employ a correlation filter to predict the translation motion and 
estimate the scale and rotation angle changes by Fourier-Mellin transform in log-polar 
coordinates. Specifically, it is well known that Fourier-Mellin transform is an extended phase 
correlation algorithm and the phase correlation algorithm can only measure the displacement 
of the whole pixel. When the target translation is not an integer, the peak energy obtained by 
phase correlation will diffuse to the surrounding adjacent pixels, which will form many small 
burrs around the main peak and reduce the accuracy of translation parameter estimation [26]. 
Therefore, in response to the above problem, we propose a quadric surface fitting for the 
points around the registration position of the whole pixel. Besides, in order to establish a stable 
and robust rotation and scale parameter estimation model, we exploit a confidence evaluation 
strategy to acquire a joint optimization result of translation, scale and rotation changes. 
Extensive experiments demonstrate that our algorithm FMCS has an outstanding performance 
in complex environment. 

In this paper, we present a novel efficient scale and rotate estimation algorithm FMCS. It 
can predict the position, scale and rotation angle of the target in the image at a speed of about 
25 fps on CPU. We take advantage of the scale and rotation changes factor to update the target 

https://www.collinsdictionary.com/zh/amp/american-thesaurus/approach#approach_1
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appearance model. In addition, making use of the APCE standard, we propose a novel 
confidence evaluation strategy to evaluate the variation factors for purpose of getting a better 
tracking model. Our algorithm consists of three parts: (1) scale and rotation angle estimation, 
(2) confidence evaluation strategy, and (3) quadric surface fitting. The contributions made in 
this article can be summarized in three points: 
1) We develope a robust tracker which combines correlation filter and Fourier-Mellin 

transform. The advantages of the tracker is introduced to improve the expressive ability of 
translation, scale and rotation estimation. 

2) A confidence evaluation strategy is developed to judge the tracking performance by 
comprehensively evaluating the results of translation, rotation and scale changes. We 
comprehensively evaluate and update the tracking model through the changes of the three 
indicators. This method can solve the problems of tracking failure and model drift to a 
certain extent. 

3) We introduce a surface fitting mechanism to improve algorithm accuracy. Extensive 
experiments on OTB100 show that our  method achieves superior performance. 

 

Fig. 1.  We propose the scale and rotate estimation algorithm, the representative patches for 
correlation and updating of sequences is shown above. 

2. Our Approach 
In order to achieve target tracking with rotation and scale adaptability, a novel ensemble 
algorithm is proposed in this paper to estimate the confidence of the tracking result and the 
displacement, scale and rotation parameters of the target. Simultaneously, a surface fitting 
mechanism is used to improve algorithm accuracy. The specific content of the algorithm is 
shown in Fig. 2. 
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Fig. 2.  Overview of the proposed algorithm 

 
In the first place, the first frame of the video is adopted to get initial parameters of the 

previous target position, scale and rotation angle. Then calculate the target position, scale and 
rotation parameters of the next frame through the correlation filter and  Fourier-Mellin 
transform. In order to achieve higher accuracy, a quadric surface fitting method is used to get 
the sub-pixel position. Finally, the confidence evaluation strategy is proposed to achieve the 
best comprehensive performance under the influence of three factors: translation scale and 
rotation transformation. If the strategy is effective, update the model of the target. Fig. 3 gives 
a flow diagram to show the process of our entire paperwork. 

 
 

 
Fig. 3.  The flow diagram of our paperwork 

2.1 Translation Estimation by Kernelized Correlation Filters 
The correlation tracking provides an elegant framework for efficient and effective object 
tracking. In this paper, the kernel correlation filtering (KCF) architecture is adopted. The idea 
of this algorithm is to construct a circular matrix by cyclically sampling the image blocks to 
enrich the target samples. Then, based on the characteristics of the cyclic matrix, the solution 
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of the problem is transformed into the discrete Fourier transform domain by using the 
diagonalization of the cyclic matrix. This process greatly reduces the computational 
complexity and increases the training speed. 

The sample training uses the ridge regression function to train the classifier. The trained 
classifier is used to judge the correlation between the newly input image and the previous 
frame image. The peak position of the target response can be considered as the possible 
location of the predicted target. The sample training process is a ridge regression problem. The 
purpose of training is to find the function ( ) Tf z w z= that minimizes the squared error. The filter 
w can be expressed as follows: 

                                     
2 2= min ( ( ) ) || ||i iw i

w f x y wλ− +∑                                                            (1) 

The kernel correlation filter is to introduce a kernel function to solve the ridge regression of 
the kernel space. The feature space is mapped to a higher dimensional space by a nonlinear 
mapping function ( )xφ , so that the mapped samples are linearly separable in the new space. At 
this point, the filter w can be defined as  

                                                ( )i i
i

w xα ϕ=∑                                                                           (2) 

Therefore, the optimization problem is transformed into finding the optimal vector α. We 
introduce a kernel function and rewrite object function as follows: 

                                               
1

( ) ( , )
n

T
i i

i
f z w z z xϕ α κ

=

= =∑（ ）                                                                   (3) 

We can solve the problem by 

                                               1( )K I yα λ −= +                                                                               (4) 
Where K is the construction of the cyclic matrix, and I is the identity matrix.  
Using the properties of the circulant matrix, α is solved by the discrete Fourier transform. 

                                              
ˆˆ ˆxx

y
k

α
λ

=
+

                                                                                  (5) 

Where ˆxxk is the kernel correlation of x and itself. 
In order to track the target quickly and determine the location of the current frame, we 

introduce the kernel matrix of the detection 
                                              ( )z xzK C k=                                                                                     (6) 
Then the response is calculated by 

                                            ˆ ˆ ˆ( ) xzf z k α=                                                                                    (7) 
Where ˆxzk is the kernel correlation of z and the base sample x. According to (7), the new 

position of current frame target locates in the maximal value of output response map. 

2.2 Scale and Rotation Estimation by Fourier-Mellin Transform 
Phase correlation is a typical transform domain-based image registration method which 
enables accurate registration between images that only exist in translational motion. Later, 
Reddy et al. [29] propose the Fourier-Mellin algorithm based on the phase correlation. The 
algorithm transforms the Cartesian coordinate system into a log-polar coordinate system 
where the rotation and scale changes can be viewed as the pure translational moving along the 
axis. In the target tracking process, the rotation and scale parameters of the target can be 
estimated by log-polar transformation of the original image. The Fourier-Mellin transform 
convert the scale and rotation changes on the original image into the frequency domain, which 
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is different from DSST and other scale-based pyramid estimation methods. This method can 
realize the scale and rotation parameters estimation of continuous space. 

Suppose there is an image f1(x, y), and the image f2(x, y) is obtained by rotation θ 0, scale 
factor α , and translation (x0, y0). The transformed image f2(x, y) can be expressed as: 

             0 0 0 0 0 0
2 1

cos sin sin cos( , ) ( , )x y x x y yf x y f θ θ θ θ
α α

+ − − + −
=                                            (8) 

 Their Fourier transforms of them are related by 

                    
0 02 ( )

0 0 0 0
2 12

cos sin sin cos( , ) ( , )
j x yeF F
π ξ η ξ θ η θ ξ θ η θ

ξ η
α α α

− + + − +
= ×                                           (9) 

Ignoring
0 02 ( )

2

j x ye π ξ η

α

− +

 ,and letting M1 and M2 be the Fourier magnitude spectra of two images. 
Then Fourier magnitude spectra between the two only has a relationship of rotation and scale 
change. We can get the following expression 

 

                                  0 0 0 0
2 1

cos sin sin cos( , ) ( , )M M ξ θ η θ ξ θ η θξ η
α α
+ − +

=                                       (10) 

Take the logarithm of the Fourier magnitude spectra and then perform polar transformation, 
the above expression can be expressed as 

 
                                                2 1 0(log , ) (log log , )M Mρ θ ρ α θ θ= − −                                                         (11) 
 

Then, the equation is rewritten as follow,  
 

                                               2 1 0( , ) ( , )M M dφ θ φ θ θ= − −                                                                 (12) 
Where = log , logdφ ρ α=   
Finally, the rotation and scale changes between the images are transformed into a 

translational motion on the distance and angle axes of the log-polar coordinate images. 
The process of Fourier-Mellin transformation is as follows: 
1) Given an image patch to be detected, and then we convert it into log-polar. 
2) By extracting the hog features of the patch, the detection area model tψ can be learned 

with numerous training samples efficiently through fast Fourier transform (FFT).  
3) The phase correlation between the previous frame model -1tψ  and the detection region 

model tψ is performed, and then search the position of the peak pulse. 
The ideal result has only one peak position, and the other positions are 0. However, in actual 

experiments, the inverse transformation of the normalized cross power spectrum phase shows 
that it not only has a correlation peak, but also has some uncorrelated peaks in the 
three-dimensional image. The position of the peak represents the translation parameter, and 
the energy of the peak reflects the correlation between the two images. 

When the Fourier-Mellin transform method is used for image registration, the calculated 
translation amount can only be estimated to integer pixels. In practical applications, the 
displacement value of an image is generally a decimal pixel, that is, a sub-pixel. When the 
offset is an integer, the pulse function is unimodal; when the offset is a sub-pixel, the pulse 
function is multimodal, with the highest peak accompanied by several small peaks. It can be 
determined that the actual offset is not at the position of any one peak, but between some of the 
highest peaks. In view of the above problems, we propose an algorithm that combines the 
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Fourier-Mellin transform and surface fitting to further improve the detection accuracy during 
target tracking. 

2.3 Sub-pixel Registration Based on Surface Fitting Method 
Surface fitting is a technique often used in graphic imaging. When doing experiments or 
measurements, some discrete data points are often obtained. These discrete data points often 
have errors and are not completely accurate, which affects the analysis of experimental results. 
Normally, we need to use the surface fitting technology to find the specific parameters of the 
function based on discrete data points. Then, the experimental data is estimated based on the 
fitted surfaces to obtain more accurate data. The surface fitting method has the advantages of 
strong robustness, high accuracy and high calculation efficiency, and it has been widely used 
in practical applications. 

In order to solve the problem of low detection accuracy of the phase correlation method, a 
quadric surface fitting method is used in this study. Taking the peak position as the center, the 
neighborhood data is fitted and the exact sub-pixel matching position is obtained by solving 
the extreme point. For this reason, after applying the Fourier-Mellin transform to the entire 
pixel-level registration of the image, a 4 × 4 matrix is selected centering on the position of the 
pulse peak, and the 16 pixels are used as the measured data to fit the quadric surface. The 
general equation of a quadric is 
                                             2 2( , )f x y ax bxy cy dx ey f= + + + + +                                                (13) 

Where a, b, c, d, e, f are the coefficients to be measured of the equation, which can be solved 
by the method of least squares. The least square method is the most commonly used method in 
surface fitting. 

Using the least squares approximation theory, the sum of the squared deviations between 
the estimated data and the measured data is 
                                                   2( ( , ))rE z f x y= −∑                                                                             (14) 

Where z is the measured data and Er is the sum of the squares of all deviations. To minimize 
Er, we find the partial derivatives of Er about a, b, c, d, e, f, and make their partial derivatives 
equal to 0. 

Then, the solution of (14) can be used to find the coefficients to be measured of the equation. 
The peak position of the fitted quadric surface is the actual position of the pulse peak. 

 
2.4 Confidence Evaluation Strategy 

This section mainly describes the confidence evaluation strategy. We judge the tracking 
results by comprehensively evaluating the results of translation, rotation and scale change. By 
comparing the confidence of the tracking results multiple times and finding the optimal value, 
the tracking results are more accurate and robust. 

During the tracking process, the target may be occluded, rotated, and scale changed. The 
main task of the tracking algorithm is to robustly estimate the position of the target in these 
challenging situations. In the process of the tracking, it is very meaningful to accurately judge 
the current tracking status of the target. The larger the peak value of the response map, the 
better the tracking result. Conversely, if the peak value is low, the whole response map may 
emerge many spurious peaks and continue to oscillate. 

According to [30], the APCE is considered as the best standard for describing the degree of 
fluctuation in response map. The APCE is expressed as  
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2
max min

2
, min

,
( ( ) )x y

x y

F F
APCE

mean F F
−

=
−∑                                                                  (15) 

 
In this case, we propose our confidence evaluation strategy. 

 
(max)0.002 0.8tAPCE Fρκ = +                                                                 (16) 

 
Where κ is confidence index, tAPCE is the fluctuation value of translation module, (max)Fρ is the 

phase correlation peak value. 
The κ value in the tracking process is used as the tracking confidence threshold. By 

comparing the κ value results in the tracking process, the position with the smallest target 
fluctuation and the highest correlation is found as the optimal result. We briefly introduce the 
outline of our method in Algorithm FMCS.  

 
Algorithm FMCS: Proposed tracking algorithm. 
Input: 
Status of the target 1 1 1 1( , , )t t t tS P S θ− − − −=  
Current image It 
Previous target position Pt-1, scale factor St-1, and rotation angle θ t-1 
Corrected kernel correlation filter model Tt-1 
Phase correlate model Mt-1 
Step 1: Estimate the target position tP′ using the kernel correlation filter   Tt-1. 
Step 2: Compute the (max)Fρ using the phase correlate model Mt-1  
Step 3: Surface fitting to get the sub-pixel position, estimate the scale factor '

tS and rotation angle tθ ′  
Step 4: Compute the APCE and confidence index κ  
            if 1n nκ κ +< and n<5, 

            '
1( , , )t t t tS P S θ− ′←  

            end 

Output: 
Status of the target ( , , )t t t tS P S θ=  
Target position Pt, scale factor St and rotation angle θ t 
Updated corrected kernel correlation filter Tt-1 and phase correlate model Mt-1 

3. Experimental Classification Results and Analysis 

3.1 Implementation Details 
The simulation experiments in this article were performed in a computer environment with an 
Intel i5-3210 2.5GHz CPU and 8GB RAM, and all the methods were implemented in 
matlab2018a. 

3.2 Datasets 
In order to fully verify the accuracy and robustness of the proposed algorithm FMCS, OTB100 
[31] was selected as the test dataset in this experiment, which contains 100 videos. The 
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OTB100 dataset divides the video sequence motion scene into 11 attributes, and the results are 
shown in Table 2. The details are as follows: DEF, OCC, FM, IV, SV, LR, OPR, MB, BC, OV 
and IPR. Through these factors we can have a more comprehensive and reliable evaluation of 
the tracking algorithm tested. 

 
Table 2. Annotated Sequence Attributes in the Performance Evaluation 

Attributes Description 
DEF Deformation – Non-rigid object deformation 
OCC Occlusion – The target is partially or fully occluded 
FM Fast Motion – The motion of the ground truth is larger than tm pixels (tm=20) 
IV Illumination Variation –The illumination in the target region is significantly changed 
SV Scale Variation –The ratio of the bounding boxes of the first frame 

LR Low Resolution – The number of pixels inside the ground-truth bounding box is less 
than tr (tr=400) 

OPR Out-of-Plane Rotation –The target rotates out of the image plane 
MB Motion Blur –The target region is blurred due to the motion of target or camera 

BC Background Clutters – The background near the target has similar color or texture as the 
target 

OV Out-of-View – Some portion of the target leaves the view 
IPR In-Plane Rotation – The target rotates in the image plane 

3.3 Tracking Algorithm Evaluation Index 
We evaluate the proposed method on OTB100 and all the tracking methods are evaluated by 
two methods. In experiments, the precision plot and the success plot are used to evaluate the 
trackers, (i) Precision Plot, which is measured by calculating the distance between the target 
frame and the center of the tracking frame. The accuracy of target tracking is evaluated by the 
size of the Euclidean distance. The smaller the Euclidean distance, the higher the accuracy.  
(ii) Success Plot, the success rate of target tracking is evaluated by tracking the overlap rate of 
the bounding boxes. Calculate the number of successful frames with an overlap rate greater 
than a given threshold in the experiment. The overlap rate is expressed as a b

a b

R R
os

R R
∩

=
∪

 . In the 

formula, the bounding box is obtained by the target tracking algorithm and the real bounding 
box is given by the dataset. When the OS of a frame is larger than the set threshold, the target 
can be considered correct. The general threshold is set to 0.5. 

To make a comprehensive comparison of tracking algorithms, we use three standards to 
acquire an accuracy plot and a success plot: OPE, TRE and SRE. The OPE initializes the first 
frame with the position of the target in the ground-truth, and then runs the tracking algorithm 
to get the average accuracy and success rate. However, it does not assess the impact of 
initialization on tracker performance. In order to analyze a tracker’s temporal and spatial 
robustness, the TRE and the SRE are introduced. The image sequence is scrambled in time 
(temporally, starting from different frames) and spatially (spatially, different bounding boxes), 
and then the algorithm is fully evaluated. We report the results in Fig. 5. 

3.4 Analysis of Experimental Results 
In order to prove the algorithm FMCS is effective, we carry out three experiments including 
different versions evaluation, overall performance evaluation and qualitative evaluation. 
Different versions evaluation is to measure whether each version algorithm can promote the 
performance of baseline algorithm. Overall performance evaluation is to compare the 
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performance of our method with others by exploiting OPE, TRE, SRE. Qualitative evaluation 
is to performance of our algorithm with other state-of-art trackers on different challenging 
sequences. 

3.4.1 Different Versions Evaluation 
In order to show the effect of the proposed algorithm, we implement different versions of 

FMCS on OTB2015. We denote FMCS without surface fitting as FMCS-NS, without 
confidence evaluation strategy as FMCS-NE and with neither of these two as FMCS-N2. The 
tracking results are summarized in Table 3. 

 
Table 3. The tracking results of different versions of FMCS 

Trackers Confidence evaluation Surface fitting Success Precision 
FMCS Yes Yes 0.585 0.783 

FMCS-NS Yes No 0.561 0.781 
FMCS-NE No Yes 0.579 0.776 
FMCS-N2 No No 0.553 0.773 

 
As can be seen in Table 3, the algorithm FMCS wo proposed shows the best tracking 

accuracy and robustness while FMCS-NS performs second and FMCS-NE performs third. 
Without the confidence evaluation strategy, FMCS-NE performs poorly because the algorithm 
can not find the best position of the object because of the noise effects. Without the surface 
fitting, FMCS-NS gets worse performance due to the integer-level parameters can only get a 
rough position, which cannot meet the high-precision positioning of the image for detection. 
Without both of these two strategies, FMCS-N2 is the worst performer in all evaluation 
metrics. Although the proposed confidence evaluation strategy and surface fitting strategy 
increase the detection time, compared with the FMCS-N2, FMCS improves the tracking 
performance observably according to the experimental results. As shown in Fig. 4, we 
evaluate the performance of the proposed algorithm and the precision score and success score 
of FMCS obtains the most rewarding performance, indicating that the additional strategies are 
effective. 

 
Fig. 4.  Precision and Success plots of different versions of FMCS 
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3.4.2 Overall Performance Evaluation 
We evaluate overall performance of the algorithm FMCS on the benchmark OTB100 with 
comparisons to six state-of-the-art trackers, including KCF [11], SAMF [13] ,DSST [14], 
LMCF [26] , Staple [32] and LCT [33]. Among them, DSST and SAMF can deal with the 
scale changes. LMCF and LCT have their own confidence evaluation and re-detection 
strategies. KCF, DSST, SAMF, Staple, LMCF, LCT are developed based on correlation filter 
trackers.  

Fig. 5 is a comprehensive evaluation of all tracking results of the algorithm on the OTB100. 
From it we can see that our tracker achieves a promising performance. Compared to the 
baseline algorithm KCF, FMCS tracker achieves an obvious improvement (8.6% in precision 
rate and 10.8% in success rate). Additionally, compared with DSST and SAMF, our method 
not only deals with the scale changes but also reaches accurate rotation angle. Therefore, our 
FMCS method gain the excellent performance both in the precision rate and success rate, 
which demonstrates that our confidence evaluation strategy and surface fitting strategy are 
effective. 

 

Fig. 5.  Precision and Success plots over all 100 sequences in the OTB100. The evaluated trackers 
are Staple, LMCF, LCT, SAMF, KCF, DSST. 

 
The  videos in OTB100 are annotated with eleven different attributes to describe the various 

challenges in the object tracking problem. Results on these attributes can be used to evaluate 
the advantages and disadvantages of trackers in various aspects. Table 4 and Table 5 show the 
comparison of FMCS with other top six tracking algorithms on these eleven attributes. 
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Table 4. Precision scores of FMCS and other six state-of-the-art on eleven attributes. Best: bold 
Attribute FMCS Staple LMCF LCT SAMF DSST KCF 

Fast motion(39) 75.5 69.7 73.0 68.1 65.4 55.2 62.1 
Background clutter(32) 77.6 77.3 82.8 74.3 69.9 71.3 72.2 

Motion blur(29) 76.3 70.7 73.0 69.9 65.5 56.7 60.1 
Deformation(44) 68.7 73.5 71.7 68.7 67.2 52.7 61.7 

Illumination variation(38) 74.3 79.3 80.1 75.0 71.6 72.3 71.6 
In-plan rotation(52) 78.6 76.2 74.5 78.1 71.4 68.3 69.8 
Low resolution(9) 58.1 63.1 67.9 53.7 68.5 56.7 56.0 

Occlusion(48) 74.3 72.1 73.6 67.9 72.2 58.9 63.2 
Out of view(14) 58.2 66.1 69.3 59.2 62.8 48.1 50.1 

Scale variation(64) 74.2 71.0 71.5 67.9 69.6 62.8 63.3 
Out-of-plane rotation(63) 78.3 73.0 76.0 74.6 73.9 64.4 67.7 

 
Table 5. Success scores of FMCS and other six state-of-the-art on eleven attributes. Best: bold 

Attribute FMCS Staple LMCF LCT SAMF DSST KCF 

Fast motion(39) 57.7 53.7 55.1 53.4 50.7 44.7 45.9 

Background clutter(32) 57.2 58.3 60.7 55.5 53.1 53.3 50.1 

Motion blur(29) 56.4 54.6 56.1 53.3 52.5 46.9 45.9 

Deformation(44) 48.6 54.5 51.7 49.4 49.9 41.0 43.5 

Illumination variation(38) 57.0 60.3 60.3 57.0 53.5 56.4 48.6 

In-plan rotation(52) 57.1 54.6 53.5 55.4 51.3 49.7 46.7 

Low resolution(9) 46.6 41.8 45.0 35.4 43.0 38.3 30.7 

Occlusion(48) 55.4 54.5 54.1 50.6 53.8 44.9 44.5 

Out of view(14) 49.9 48.1 53.9 45.2 48.0 38.6 39.3 

Scale variation(64) 54.2 51.4 51.3 48.5 48.8 46.2 39.4 

Out-of-plane rotation(63) 49.9 48.1 53.9 45.2 48.0 38.6 39.3 

 
Considering precision rate and success rate, the FMCS achieves the best performance in 

most of the attributes. Thanks to confidence evaluation strategy, our FMCS algorithm can 
track the objects under Occlusion. When the objects undergo Occlusion, the performance of 
our tracker has been improved by 1.3% as compared with the LMCF. With the accurate scale 
and rotation estimation mechanism, our FMCS tracker performs well when the object is under 
Scale variation, Out-of-plane rotation and In-plan rotation. Besides, attributing the scale and 
rotation estimation mechanism, our FMCS method can effectively deal with the Scale 
variation, In-plan rotation and Out-of-plan rotation challenges. 

3.4.3 Qualitative Evaluation 
In order to acquire an intuitive comparison, we evaluate the tracking algorithms on eight 
sequences that have serious scale and rotation changes. Fig. 6 demonstrates the results 
generated by seven state-of-the-art trackers (LCT, DSST, Staple, LMCF, KCF and SAMF). 
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Fig. 6. Tracking results on several challenging sequences. From left to right and top to down are Skiing, 
Toy, Dragonbaby, Jogging-2, Freeman3, Freeman4, Shaking, Skater. 

 
For Toy sequence, the task is to track a moving object in the hand with scale variation and 

fast motion, and our FMCS and Staple methods acquire relatively high precision. For 
Dragonbaby sequence, DSST and KCF algorithms tend to drift at frame 32 owing to the fast 
motion and rotation and gradually other algorithms start to keep up with the target's movement. 
Finally, all trackers except FMCS fail to locate the object at frame 96, and only our FMCS can 
successfully accomplish the whole tracking task. As shown in Jogging-2 sequence, the girl is 
completely occluded by the pillar at frame 45, and some trackers lose the target. However, 
when the object reappears in the scene, only FMCS and LMCF can recover from drifting. 
Although our algorithm uses the APCE idea mentioned in the LMCF, we have proposed our 
own confidence evaluation strategy during the target tracking process. Through the above 
strategy, we find the best status of the templated object and record the most reliable model to 
deal with the challenging problems. 

From the Freeman3 and Freeman4 sequences, it can be observed that our FMCS algorithm 
is able to handle scale and rotation changes. Despite DSST and SAMF are devoted to handle 
scale variation, they all have a poor performance owing to the limited range of scale space. In 
the Skiing, Shaking and Skater sequences, many trackers are less discriminative of the target 
that have evident camera motion. In contrast, our FMCS approach adaptively fuses the 
response confidence of two independent models, which strengthens the robustness of our 
tracker and increases the tracking precision. 
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4. Conclusion 
In this paper, we proposed a novel effective algorithm FMCS to estimate the scale and rotation 
changes for robust object tracking. Furthermore, a confidence evaluation strategy is proposed 
for preventing model drift and in order to improve the precision of tracking results, we fit the 
second-order polynomial to the best matching neighborhood. The maximum value of each 
polynomial is the best value of the sub-pixel accuracy of the object position. We compare four 
different versions of FMCS and compare it with other 6 mainstream algorithms in the OTB100. 
The results show that our method using OPE performs well with precision plot of 78.3% and 
success plot of 58.5%, which achieves outstanding performance and verifies the effectiveness 
of the proposed algorithm in dealing with scale and rotation estimation. Our method mainly 
focuses on an effective evaluation of the scale and rotation transformation of the tracking 
target. On the other hand, in spite of the advantages of rotating the bounding box, it is 
computationally very laborious to estimate it. To attain this, in the future, we will pay more 
attention to get better rotation angle with increased computational efficiency. 
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