DOI QR코드

DOI QR Code

A Rare Stinkhorn Fungus Itajahya rosea Attract Drosophila by Producing Chemical Attractants

  • Borde, Mahesh (Department of Botany, Savitribai Phule Pune University) ;
  • Kshirsagar, Yogesh (Department of Botany, Savitribai Phule Pune University) ;
  • Jadhav, Reshma (National Fungal Culture Collection of India, Biodiversity and Palaeobiology Group, MACS' Agharkar Research Institute) ;
  • Baghela, Abhishek (National Fungal Culture Collection of India, Biodiversity and Palaeobiology Group, MACS' Agharkar Research Institute)
  • Received : 2021.01.06
  • Accepted : 2021.05.08
  • Published : 2021.06.30

Abstract

Itajahya rosea was found growing in association with Leucaena leucocephala plants at Savitribai Phule Pune University campus in India. The species identity was confirmed by phylogenetic analysis based on ITS and LSU regions of rDNA, wherein, our fugus was placed along with I. rosea in phylogenetic tree. It represents first record of I. rosea from India. Frequent visitation by Drosophila species on I. rosea fruiting body particularly on gleba was observed. The Drosophila got attracted to the detached gleba under the laboratory conditions and even sometimes, they prefer to sit over the gleba as compare to their food banana. It suggested that I. rosea gleba or pseudostipe produces some compounds for attraction and feeding behavior of Drosophila species. Therefore, we characterized the volatile attractants produced by gleba and pseudostipe of I. rosea by GC-MS analysis. Nineteen compounds were identified from gleba while nine compounds were recovered from the pseudostipe. Out of them, blends of three abundant odor producing volatile compounds were reported namely, Hexadecane, Pentadecane and Nonadecane, which are responsible for attraction of Drosophila toward the gleba. Three fatty acids namely 9,12-octadecadienoic acid (Z,Z), hexadecanoic acid and benzoic acid ethyl ester produced are served as an appetitive signal through olfactory response of Drosophila, so the flies were feed on the gleba. Two pheromones' compounds, heneicosane and (+)-(5S,9S)-5,9-dimethylpentadecane, were also reported in pseudostipe and gleba, respectively, which play a role in Drosophila for breeding. Our study highlights an intriguing chemical ecology of fungus-Drosophila interaction.

Keywords

Acknowledgement

The authors are thankful to Director, Agharkar Research Institute, Pune, for providing the necessary facilities and support for the research. Authors are thankful to Bhupendra V. Shravage for a fruitful discussion on behavioral studies on Drosophila.

References

  1. Hosaka K, Bates ST, Beever RE, et al. Molecular phylogenetics of the gomphoid-phalloid fungi with an establishment of the new subclass Phallomycetidae and two new orders. Mycologia. 2006;98(6):949-959. https://doi.org/10.3852/mycologia.98.6.949
  2. Fries RE. Cber einige Gasteromyceten aus Bolivia und Argen-tinien. Arkives for Botanik. 1909;8(11):3-7.
  3. Spegazzini C. Fungi Argent. novi vel criti. Anales Del Museo Nacional de Buenos Aires. 1899;6:183.
  4. Malencon G. Phallus roseus A. Delile 1813, alias Itajahya rosea(Delile) Ed. Fischer 1929. Bull Soc mycolog France. 1984;100:15-33.
  5. Kreisel H. A preliminary survey of the genus Phallus sensu lato. Czech Mycol. 1996;48(4):273-281. https://doi.org/10.33585/cmy.48407
  6. Moller Alfred. BrazilischenPilzblumen, 79-100 et 148, in Schimp. Botanische Mittheilungen aus den Tropen. 1895. 7, p. 79.
  7. Malencon G. Itajahya rosea (Delile) E. Fischer, tres rare Phaloidee decouverte dans l'Ardrar Mauritanien par M. le Pr. Th. Manad. Bulletin de la Societe dHistoire Naturelle de l'Afrique du Nord 1953. 44, p.70-75.
  8. Ottoni BS, Silva BDB, Fazolino EP, et al. Phallus roseus, first record from the neotropics. Mycotaxon. 2010;112(1):5-8. https://doi.org/10.5248/112.5
  9. Delile AR. Phallus roseus Delile, Flore d'Egypte. Explic. Pl. (Paris) 1813. 2, p. 300.
  10. Cabral TS, Marinho P, Goto BT, et al. Abrachium, a new genus in the Clathraceae, and Itajahya reassessed. Mycotaxon. 2012;119(1):419-429. https://doi.org/10.5248/119.419
  11. Ingold CT. Fungal spores: their liberation and dispersal. Oxford: Clarendon, 1971. p. 302.
  12. Malloch D, Blackwell M. Dispersal of fungal diaspores. In: Carroll GC, Wicklow DT, editors. The fungal community: its organization and role in the ecosystem. 2nd edn. New York (NY): Marcel Dekker; 1992. p. 147-171.
  13. Driessen G, Hemerik L. Aggregative responses of parasitoids and parasitism in populations of Drosophila breeding in fungi. Oikos. 1991;61(1): 96-107. https://doi.org/10.2307/3545411
  14. Pudil F, Uvira R, Janda V. Volatile compounds in stinkhorn (Phallus impudicus L. ex Pers.) at different stages of growth. Eur Sci J. 2014;10:163-171.
  15. Tuno N. Spore dispersal of Dictyophora fungi (Phallaceae) by flies. Ecol Res. 1998;13(1):7-15. https://doi.org/10.1046/j.1440-1703.1998.00241.x
  16. Aamir S, Sutar S, Singh SK, et al. A rapid and efficient method of fungal genomic DNA extraction, suitable for PCR based molecular methods. PPQ. 2015;5(2):74-81. https://doi.org/10.5943/ppq/5/2/6
  17. Vilgalys R, Hester M. Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. J Bacteriol. 1990;172:4238-4246. https://doi.org/10.1128/jb.172.8.4238-4246.1990
  18. White TJ, Bruns T, Lee S, et al. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ, editors. PCR protocols: a guide to methods and applications. New York (NY): Academic Press Inc.; 1990. p. 315-322.
  19. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987;4:406-425.
  20. Tamura K, Nei M, Kumar S. Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc Natl Acad Sci USA. 2004;101(30):11030-11035. https://doi.org/10.1073/pnas.0404206101
  21. Kumar S, Stecher G, Tamura K, et al. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol Biol Evol. 2016;33:1870-1874. https://doi.org/10.1093/molbev/msw054
  22. Long WH, Stouffer DJ. Studies in the Gasteromycetes - IX. The genus, Itajahya in North America. Mycologia. 1943;35:620-628. https://doi.org/10.2307/3754905
  23. Marincowitz S, Coetzee MPA, Wilken PM, et al. Phylogenetic placement of Itajahya: an unusual Jacaranda fungal associate. IMA Fungus. 2015;6(2):257-262. https://doi.org/10.5598/imafungus.2015.06.02.01
  24. Moreno G, Khalid AN, Alvarado P, et al. Phallus hadriani and P. roseus from Pakistan. Mycotaxon. 2013;125(1):45-51. https://doi.org/10.5248/125.45
  25. Kreisel H, Al-Fatimi M. Further basidiomycetes from Yemen. Feddes. Repertorium. 2008;119(5-6):463-483. https://doi.org/10.1002/fedr.200811175
  26. Hansford CG. Australian fungi. II. New records and revisions. Proc Linnean Soc New South Wales. 1954;79:97-141.
  27. Bernays EA, Chapman RF. Host-plant selection by phytophagous insects. Chapman & Hall, New York (NY), Boston (MA): Springer; 1994. p. 1-283.
  28. Pacioni G, Bologna MA, Laurenzi M. Insect attraction by Tuber: a chemical explanation. Mycol Res. 1991;95(12):1359-1363. https://doi.org/10.1016/s0953-7562(09)80385-7
  29. Bengtsson G, Hedlind K, Rundgren S, et al. Selective odor perception in the soil Collembola. J Chem Ecol. 1991;17(11):2113-2125. https://doi.org/10.1007/BF00987995
  30. Jonsell M, Nordlander G. Field attraction of Coleoptera to odours of the wood decaying polypores Fomitopsis pinicola and Fomes fomentarius. Ann Zool Fenn. 1995;32:391-402.
  31. Honda H, Ishiwatari T, Matsumoto Y. Fungal volatiles as oviposition attractants for the yellow peach moth, Conogethes punctiferalis (Guenee) (Lepidoptera; Pyralidae). J Insect Physiol. 1988;34(3):205-211. https://doi.org/10.1016/0022-1910(88)90051-0
  32. Phelan LP, Lin H. Chemical characterization of fruit and fungal volatiles attractive to dried-fruit beetle Carpophilus hemipterus (L.) (Coleoptera: Nitidulidae). J Chem Ecol. 1991;17(6):1253-1262. https://doi.org/10.1007/BF01402948
  33. Pierce AM Jr, Pierce HD, Oehlschlager AC, Borden JH, et al. 1-Octen-3-ol, attractive semiochemical for foreign grain beetle, Ahasverus advena (Waltl) (Coleoptera: Cucujidae). J Chem Ecol. 1991;17(3):567-580. https://doi.org/10.1007/BF00982127
  34. Pfeil RM, Mumma RO. Bioassay for evaluating attraction of the phorid fly, Megaselia halterata to compost colonized by the commercial mushroom, Agaricus bisporus and to 1-octen-3-ol and 3-octanone. Entomol Exp Appl. 1993;69(2):137-144. https://doi.org/10.1111/j.1570-7458.1993.tb01736.x
  35. Borg-Karlson AK, Englund FO, Unelius CR. Dimethyloligosulphide, major volatiles released from Sauromatum guttatum and Phallus impudicus. Phytochemistry. 1994;35(2):321-323. https://doi.org/10.1016/S0031-9422(00)94756-3
  36. Kumar P, Lomash V, Jatav PC, et al. Prenatal developmental toxicity study of n-heneicosane in Wistar rats. Toxicol Ind Health. 2016;32(1):118-125. https://doi.org/10.1177/0748233713498438
  37. Dweck HKM, Ebrahim SAM, Khallaf MA, et al. Olfactory channels associated with the Drosophila maxillary palp mediate short- and long-range attraction. eLife. 2016;5:14925.
  38. Riffell JA, Lei H, Hildebrand JG, et al. Neural correlates of behavior in the moth Manduca sexta in response to complex odors. Proc Natl Acad Sci USA. 2009;106:19219-19226. https://doi.org/10.1073/pnas.0910592106
  39. Jurgens A, Witt T, Gottsberger G. Flower scent composition in night-flowering *Silene species (Caryophyllaceae). Biochem Syst Ecol. 2002;30(5):383-397. https://doi.org/10.1016/S0305-1978(01)00106-5
  40. Dotterl S, Fussel U, Jurgens A, et al. 1,4-Dimethoxybenzene, a floral scent compound in willows that attracts an oligolectic bee. J Chem Ecol. 2005;31:2993-2998. https://doi.org/10.1007/s10886-005-9152-y
  41. Anholt RRH. Chemosensation and evolution of Drosophila host plant selection. iScience. 2020;23:100799. https://doi.org/10.1016/j.isci.2019.100799
  42. Hallem EA, Carlson JR. Coding of odors by a receptor repertoire. Cell. 2006;125:143-160. https://doi.org/10.1016/j.cell.2006.01.050
  43. Masek P, Keene AC. Drosophila fatty acid taste signals through the PLC pathway in sugar-sensing neurons. PLoS Genet. 2013;9(9):e1003710. https://doi.org/10.1371/journal.pgen.1003710
  44. Lilleskov EA, Bruns TD. Spore dispersal of a resupinate ectomycorrhizal fungus, Tomentella sublilacina, via soil food webs. Mycologia. 2005;97:762-769. https://doi.org/10.1080/15572536.2006.11832767
  45. Kues U, Navarro-Gonzalez M. Communication of fungi on individual, species, kingdom and above kingdom levels. In: Anke T, Weber S, Editors. Physiology and genetics. Selected basic and applied aspects. The mycota. Berlin: Springer; 2009. p. XV: 79-106.
  46. Kobayashi M, Kitabayashi K, Tuno N. Spore dissemination by mycophagus adult drosophilids. Ecol Res. 2017;32(4):621-626. https://doi.org/10.1007/s11284-017-1477-9
  47. Zarbin PHG, Princival JL, Lima ER, et al. Unsymmetrical double Wittig olefination on the syntheses of insect pheromones. Part 1: synthesis of 5,9-dimethylpentadecane, the sexual pheromone of Leucoptera coffeella. Tetrahedron Lett. 2004;45(2):239-241. https://doi.org/10.1016/j.tetlet.2003.10.183
  48. Afieroho OE, Ugoeze KC. Gas Chromatography-Mass Spectroscopic (GC-MS) Analysis of n-hexane extract of Lentinus tuber-regium (Fr) Fr (Polyporaceae) Syn Pleurotus tuber regium Fr sclerotia. Trop J Pharm Res. 2014;13(11):1911-1915. https://doi.org/10.4314/tjpr.v13i11.20
  49. Aneesh S, Thoppil JE. Study on cytotoxicity and chemical profiling of Hexagonia tenuis (Hook.) Fr., a potential bracket fungus (Polyporaceae). Int J Pharm Biol Sci. 2019;9(3):822-831.
  50. Driessen G, Van Alphen JJM, Hemerik L. Drosophila species, breeding in the stinkhorn (Phallus impudicus Pers.) and their larval parasitoids. Neth J Zool. 1989;40(3):409-427. https://doi.org/10.1163/156854290X00019
  51. Hosaka K, Uno K. A preliminary survey on larval diversity in mushroom fruit bodies. Bull Natl Museum Nat Sci Ser B (Botany). 2012;38:77-85.
  52. Jonsell M, Gonzalez Alonso C, Forshage M, et al. Structure of insect community in the fungus Inonotus radiatus in riparian boreal forests. J Nat Hist. 2016;50(25-26):1613-1631. https://doi.org/10.1080/00222933.2016.1145273
  53. Kinzner MC, Tratter M, Bachli G, et al. Oviposition substrate of the mountain fly Drosophila nigrospersa (Diptera: Drosophilidae). PLoS One. 2016;11(10):e0165743. https://doi.org/10.1371/journal.pone.0165743
  54. Collett TS, Zeil J. Insect learning flights and walks. Curr Biol. 2018;28(17):R984-R988. https://doi.org/10.1016/j.cub.2018.04.050
  55. Epps MJ, Penick CA. Facultative mushroom feeding by common woodland ants (Formicidae, Aphaenogaster spp.). Food Web. 2018;14:9-13. https://doi.org/10.1016/j.fooweb.2017.12.001