DOI QR코드

DOI QR Code

Characteristics of Fibrinolytic Enzymes of Bacillus licheniformis CY-24 Isolated from Button Mushroom Compost

양송이 배지로부터 분리한 Bacillus licheniformis CY-24의 섬유소분해 효소의 특성

  • Min, Gyeong-Jin (Mushroom Science Division, National Institute of Horticultural and Herbal Science, RDA) ;
  • Park, Hea-sung (Mushroom Science Division, National Institute of Horticultural and Herbal Science, RDA) ;
  • Lee, Een-ji (Mushroom Science Division, National Institute of Horticultural and Herbal Science, RDA) ;
  • Lee, Chan-Jung (Mushroom Science Division, National Institute of Horticultural and Herbal Science, RDA)
  • 민경진 (농촌진흥청 국립원예특작과학원 인삼특작부 버섯과) ;
  • 박혜성 (농촌진흥청 국립원예특작과학원 인삼특작부 버섯과) ;
  • 이은지 (농촌진흥청 국립원예특작과학원 인삼특작부 버섯과) ;
  • 이찬중 (농촌진흥청 국립원예특작과학원 인삼특작부 버섯과)
  • Received : 2021.05.04
  • Accepted : 2021.06.21
  • Published : 2021.06.30

Abstract

The present study was performed to improve the technique used for fermenting the mushroom growth medium. Taxonomic analysis of 16S rDNA sequence from the predominant Bacillus strain CY-24 isolated during the fermentation phase of the rice straw medium identified it as Bacillus licheniformis. In addition, the growth environment of B. licheniformis was also examined in this study, which revealed the optimal growth temperature and pH to be 30 ℃ and 6.0, respectively. This study also revealed that carboxymethyl cellulase (CMCase) and polygalacturonase (PGase) enzymes isolated from B. licheniformis achieved their maximal activities at 50 ℃ and 60 ℃ respectively. Furthermore, the study confirmed that the two enzymes, i.e., CMCase and PGase in B. licheniformis are stable at temperatures above 60 ℃. The present study thus demonstrates that B. licheniformis CY-24 possesses excellent enzymatic properties. It also reveals that the action of enzymes during the production of growth mediums used for the cultivation of mushrooms is closely associated with the promotion of fermentation and softening of the rice straw. Overall, this study provides elementary information regarding the role of B. licheniformis enzymes during growth medium fermentation for Agaricus bisporus cultivation.

본 연구는 양송이 배지의 관행 발효기술을 개선하고자 실험을 실시하였다. 양송이 볏짚 배지 발효단계에서 우점하는 Bacillus strain CY-24 균주를 순수분리하여 16S rDNA 염기서열을 통한 동정 결과 Bacillus licheniformis로 밝혀졌다. B. licheniformis 최적 생육 온도는 30℃, 최적 생육 pH는 6.0에서 가장 생육이 활발한 것을 확인하였으며, B. licheniformis CY-24 균주는 glycerol, glycogen, L-arabinose, D-ribose, D-xylose, D-galactose, D-glucose, D-fructose, D-mannose 등의 탄소원을 잘 활용하였고, 효소활성 측정 결과 esterase, leucine arylamidase, acid phosphatase, β-glucosidase 등에서 양성반응을 나타내었다. CMCase 활성 온도는 50℃, PGase는 60℃에서 가장 효과가 극대화되었으며, CMCase, PGase 두 효소는 60℃ 이상에서도 안정성이 유지되는 것을 확인하였다. 금속이온의 촉매 효과는 CoCl2 1mM에서 가장 활성이 높은 것으로 나타났다. B. licheniformis CY-24의 효소학적 특성은 매우 우수하였으며, 양송이 재배에 사용되는 배지를 생산하는 과정에 효소의 작용은 볏짚의 발효 촉진과 연화 작용에 밀접한 관계가 있으므로 유용생물자원으로써 발효기술에 대한 기초자료로 이용될 수 있을 것으로 판단된다. 추후 다양한 미생물과 버섯균의 상호작용에 대한 면밀한 연구가 이루어진다면 유용한 자원으로 이용 될 수 있을 것으로 생각된다.

Keywords

Acknowledgement

본 연구는 농촌진흥청 국립원예특작과학원 기관 고유 연구과제 (PJ014361022021)에 의하여 수행된 결과로 이에 감사드립니다.

References

  1. Min KJ, Kim JK, Kwak AM, Kong WS, Oh YH, Kang HW. Genetic diversity of Agaricus bisporus strains by PCR polymorphism. Kor J Mycol 2014;42:1-8. https://doi.org/10.4489/KJM.2014.42.1.1
  2. Lee BE, Lee CJ, Yoon MH, Kim YG, Lee BJ. New cultivation method of button mushroom (Agaricus bisporus) utilizing mixture of sawdust and chicken manure. J Mushrooms 2016;14:179-83. https://doi.org/10.14480/JM.2016.14.4.179
  3. Doi RH, Kosugi A. Cellulosomes: Plant-cell-wall-degrading enzyme complexes. Nat Rev. Microbiol 2004;2:541-51. https://doi.org/10.1038/nrmicro925
  4. Kim MJ, Lim SJ, Kang DK. Isolation of a Bacillus licheniformis DK42 producing cellulase and xylanase, and properties of the enzymes. J Anim Sci Technol 2008;50:429-36. https://doi.org/10.5187/JAST.2008.50.3.429
  5. Lee CJ, Yu BK, Park HS, Lee EJ, Min GJ. Characteristics of the media under a self-propelled compost turner in button mushroom cultivation. J Mushrooms 2020;18:274-9.
  6. Lim SH, Lee YH, Kang HW. Optimal extraction and characteristics of lignocellulytic enzymes from various spent mushroom composts. Mycobiology 2013;41:160-6.
  7. Lee CJ, Yoo YM, Moon JW, Cheong JC, Kong WS, Kim YG, Lee BE, Yoon MH, Sa TM. Characteristics and distribution of microorganisms in a rice straw compost for cultivation of button mushrooms (Agaricus bisporus). Kor J Mycol 2017;45:43-53. https://doi.org/10.4489/KJM.20170005
  8. Kim TI, Han JD, Jeon BS, Ha SW, Yang CB, Kim MK. Isolation and characterization of Bacillus subtilis CH-10 secreting cellulase from cattle manure. Kor J Mycol 1999;35:277-82.
  9. Bark SW, Kim WR, Kim MJ, Kang BK, Pak WM, Kim BR, Ahn DH. Optimization and characterization of conditions for cellulose-degrading crude enzymes produced by Cellulophaga lytica PKA 1005. J Microbiol Biotechnol 2014;42:18-24.
  10. Gerrits JPG, Bels-Koning HC, Muller FM. Changes in compost constituents during composting, pasteurization and cropping. J Mushrooms 1967;6:225-43.
  11. Reese ET. Enzymatic hydrolysis of cellulose. Appl Microbiol 1956;4:39-45. https://doi.org/10.1128/am.4.1.39-45.1956
  12. Halliwell G, Riaz M. The formation of short fibres from native cellulose by components of Trichoderma koningii cellulase. Biochem J 1970;116:35-42. https://doi.org/10.1042/bj1160035
  13. Rosenberg SL. Cellulose and lignocellulose degradation by thermophilic and thermotolerant fungi. Mycologia 1978;70:1-13. https://doi.org/10.1080/00275514.1978.12020196
  14. Rao M, Seeta R, Deshpande V. Effect of pretreatment on the hydrolysis of cellulose by Penicillium funiculosum cellulase and recovery of enzyme. Biotechnol Bioeng 1983;25:1863-71. https://doi.org/10.1002/bit.260250714
  15. Elshafei AM, Vega JL, Klasson KT, Clausen EC, Gaddy JL. The saccharification of corn stover by cellulase from Penicillium funiculosum. Bioresour Technol 1991;35:73-80. https://doi.org/10.1016/0960-8524(91)90084-W
  16. Kim ES, Lee HJ, Bang WG, Choi IG, Kim KH. Functional characterization of a bacterial expansin from Bacillus subtilis for enhanced enzymatic hydrolysis of cellulose. Biotechnol Bioeng 2009;102:1342-53. https://doi.org/10.1002/bit.22193
  17. Lin L, Kan X, Yan H, Wang D. Characterization of extracellular cellulose-degrading enzymes from Bacillus thuringiensis strains. Electron J Biotechnol 2012;15:1-7.
  18. Sun S, Zhang Y, Liu K, Chen X, Jiang C, Huang M, Li C. Insight into biodegradation of cellulose by psychrotrophic bacterium Pseudomonas sp. LKR-1 from the cold region of China: Optimization of cold-active cellulase production and the associated degradation pathways. Cellulose 2020;27:315-33. https://doi.org/10.1007/s10570-019-02798-y
  19. Taguchi F, Yamada K, Hasegawa K, Taki-Saito T, Hara K. Continuous hydrogen production by Clostridium sp. strain no. 2 from cellulose hydrolysate in an aqueous two-phase system. J Ferment Bioeng 1996;82:80-83. https://doi.org/10.1016/0922-338X(96)89460-8
  20. Kim JY, Heo SH, Hong JH. Isolation and characterization of an alkaline cellulase produced by alkalophilic Bacillus sp. HSH-810. J Microbiol Biotechnol 2004;40:139-46.
  21. Kim DJ, Shin HJ, Min BH, Yoon KH. Isolation of a thermophilic Bacillus sp. producing the thermostable cellulase-free xylanase, and properties of the enzyme. J Microbiol Biotechnol 1995;23:304-10. https://doi.org/10.4014/jmb.1211.11048
  22. Lee JH, Choi SH. Xylanase production by Bacillus sp. A-6 isolated from rice bran. J Microbiol Biotechnol 2006;16:1856-61.
  23. Nakano MM, Marahiel MA, Zuber P. Identification of a genetic locus required for biosynthesis of the lipopeptide antibiotic surfactin in Bacillus subtilis. J Bacteriol 1988;170:5662-8. https://doi.org/10.1128/jb.170.12.5662-5668.1988
  24. Regine MD, Ptak M, Peypouxb F, Michel G. Pore-forming properties of iturin A, a lipopeptide antibiotic. Biochim Biophys Acta 1985;815:405-9. https://doi.org/10.1016/0005-2736(85)90367-0
  25. Roongsawang TT. Kameyama M. Haruki M. Morikawa. Isolation and characterization of a halotolerant Bacillus subtilis BBK-1 which produces three kinds of lipopeptides: Bacillomycin L, plipastain and surfactin. Extremophiles 2002;6:499-506. https://doi.org/10.1007/s00792-002-0287-2
  26. Schallmey M, Singh A, Ward OP. Developments in the use of Bacillus species for industrial production. Can J Microbiol 2004;50:1-17. https://doi.org/10.1139/w03-076
  27. Shin PG, Cho SJ. Cellulase and xylanase activity of compost-promoting bacteria Bacillus sp. SJ21. KSSSF 2011;44:836-40.
  28. Reasoner DJ, Geldreich EE. A new medium for the enumeration and subculture of bacteria from potable water. Appl Environ Microbiol 1985;49:1-7. https://doi.org/10.1128/aem.49.1.1-7.1985
  29. Saitou N, Nei M. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406-25.
  30. Palleroni NJ, Krieg NR, Holt JG. Bergey's manual of systematic bacteriology. Baltimore: The Willian and Wilkins. Co; 1984. p. 141-219.
  31. Miller GL, Blum R, Glennon WE, Burton AL. Measurement of carboxymethyl cellulase activity. Anal Biochem 1960;1:127-32. https://doi.org/10.1016/0003-2697(60)90004-X
  32. Thompson JD, Gibson TJ, Higgins DG. Multiple sequence alignment using ClustalW and ClustalX. Curr Protoc Bioinformatics 2003;1:2-3.
  33. Rey M, Ramaiya P, Nelson BA, Brody-Karpin SD, Zaretsky EJ, Tang M, Berka RM. Complete genome sequence of the industrial bacterium Bacillus licheniformis and comparisons with closely related Bacillus species. Genome Biol 2004;5:1-12.
  34. Karim A, Nawaz MA, Aman A, Qader SAU. Hyper production of cellulose degrading endo (1,4) β-d-glucanase from Bacillus licheniformis KIBGE-IB2. J Radiat Res Appl Sci 2015;8:160-5. https://doi.org/10.1016/j.jrras.2014.06.004
  35. de Boer AS, Priest F, Diderichsen B. On the industrial use of Bacillus licheniformis: A review. Appl Microbiol Biotechnol 1994;40:595-8. https://doi.org/10.1007/BF00173313
  36. Milijasevic-Marcic S, Stepanovic M, Todorovic B, Duduk B, Stepanovic J, Rekanovic E, Potocnik I. Biological control of green mould on Agaricus bisporus by a native Bacillus subtilis strain from mushroom compost. Eur J Plant Pathol 2017;148:509-19. https://doi.org/10.1007/s10658-016-1107-3
  37. Waghmare SR, Ghosh JS. Chitobiose production by using a novel thermostable chitinase from Bacillus licheniformis strain JS isolated from a mushroom bed. Carbohydr Res 2010;345:2630-35. https://doi.org/10.1016/j.carres.2010.09.023
  38. Gomaa EZ. Chitinase production by Bacillus thuringiensis and Bacillus licheniformis: Their potential in antifungal biocontrol. Microbiology 2012;50:103-11.
  39. Vijayalakshmi S, Ranjitha J, Rajeswari VD. Enzyme production ability by Bacillus subtilis and Bacillus licheniformis-A comparative study. Asian J Pharm Clin Res 2013;6:29-32.
  40. Choi WH, Choi YS, Jang KY, Yoon MH. Xylanase properties of Bacillus subtilis AB-55 isolated from waste mushroom bed of Agaricus bisporus. Korean J Agric Sci 2012;39:255-61. https://doi.org/10.7744/CNUJAS.2012.39.2.255