Acknowledgement
본 연구는 국토교통과학기술진흥원의 "데이터기반 항공교통관리 기술개발" 과제의 일환으로 수행되었으며 지원에 감사드립니다.
References
- Gurkan, H., Gurel, S., and Akturk, M. S., "An integrated approach for airline scheduling, aircraft fleeting and routing with cruise speed control", Transportation Research Part C 68, 2016, pp.38-57. https://doi.org/10.1016/j.trc.2016.03.002
- Barnhart, C., and Cohn, A., "Airline schedule planning: Accomplishments and opportunities", Manufacturing & Service Operations Management, 6(1) Winter, 2004, pp.3-22. https://doi.org/10.1287/msom.1030.0018
- Evler, J., Asadi, E., Preis, H., and Fricke, H., "Airline ground operations: Optimal schedule recovery with uncertain arrival times", Journal of Air Transport Management 92, 2021, DOI: 10.1016/j.jairtraman.2021.102021
- Clarke, M. D. D., "Irregular airline operations: A review of the state-of-the-practice in airline operations control centers", Journal of Air Transport Management 4, 1998, pp.67-76. https://doi.org/10.1016/S0969-6997(98)00012-X
- Mathaisel, D. F. X., "Decision support for airline system operations control and irregular operations", Computers & Operations Research, 23(11), 1996, pp.1083-1098. https://doi.org/10.1016/0305-0548(96)00007-X
- Wilson, J. M., "Gantt charts: A centenary appreciation", European Journal of Operational Research, 149, 2003, pp.430-437. https://doi.org/10.1016/S0377-2217(02)00769-5
- Jo, J., Huh, J., Park, J., Kim, B., and Seo, J., "LiveGantt: Interactively visualizing a large manufacturing schedule", IEEE Transactions on Visualization and Computer Graphics, 20(12), 2014.
- Shihab, S. A. M., Logemann, C., Thomas, D. G., and Wei, P., "Autonomous airline revenue management: A deep reinforcement learning approach to seat inventory control and overbooking", arXiv:1902.06824 [cs.AI], 2009.
- Provost, F., and Fawcett, T, "Data science and its relationship to big data and datadriven decision making", Mary Ann Liebert, Inc., 1(1), Feb. 13, 2013.
- DeGiovanni, J. J., "Seeing the data: United airlines implements new methods of analyzing safety data and improving performance", Flight Safety Foundation, 2017, https://flightsafety.org/asw-article/seeing-the-data
- Davenport, T. H., "At the big data crossroads: Turning towards a smarter travel experience", Amadeus IT Group, 2013, https://amadeus. com/documents/en/blog/pdf/2013/07/amadeus-big-data-report.pdf
- Lufthansa Systems, "Manage Your Airline Operations by Exception", Lufthansa Systems GmbH & Co. KG, 2015, https://www.lhsys tems.com/static/dde9d5c2f582d72ba75c3cf938346263/pb_netline_ops_0.pdf
- Mitchell, T. M., "Machine Learning", McGrawHill Science, Engineering, Math, New York, NY, USA, 1997, pp.2.
- Jolliffe, I. T., "Principal Component Analysis, Second Edition", Springer Verlag, New York, NY, 2002, pp.10-28.
- Lu, H., Plataniotis, K. N., and Venetsanopoulos, A. N., "MPCA: Multilinear principal component analysis of tensor objects", IEEE Transactions on Neural Networks, 19(1), 2008.
- Platzer, A., "Visualization of SNPs with t - SNE", PLoS ONE 8(2), 2013, e56883, DOI: 10.1371/journal.pone.0056883
- Sammon Jr, J. W., "A nonlinear mapping for data structure analysis", IEEE Transactions on Computers, C-18(5), 1969.
- Tenenbaum, J. B., Silva, V. D., and Langford, J. C., "A global geometric framework for nonlinear dimensionality reduction", Science, 290, 2000, pp.2319-2323. https://doi.org/10.1126/science.290.5500.2319
- Maaten, L. V. D., and Hinton, G., "Visualizing data using t -SNE", Journal of Machine Learning Research, 9, 2008, pp.2579-2605.
- Kobak, D., and Berens, P., "The art of using t -SNE for Single-cell Transcriptomics", Nature Communications 10(5416), 2019, DOI: https: //doi.org/10.1038/s41467-019-13056-x
- Barratt, S. T., Kochenderfery, M. J., and Boyd, S. P., "Learning probabilistic trajectory models of aircraft in terminal airspace from position data", IEEE Transactions on Intelligent Transportation Systems, 2019, DOI: https://doi.org/10.1109/TITS.2018.2877572
- Hong, S., and Lee, K., "Trajectory prediction for vectored area navigation arrivals", Journal of Aerospace Informations Systems, 12(7), 2015.
- Hinton, G. E., and Roweis, S. T., "Stochastic Neighbor Embedding", Advances in Neural Information Processing Systems, The MIT Press, Vol. 15, Cambridge, MA, USA, 2002, pp.833-840.
- Wattenberg, M., Viegas, F., and Johnson, I., "How to use t -SNE effectively", Distill, 2016, DOI: http://doi.org/10.23915/distill.00002
- Kim, A. M., "Jeju Airport Resumes Operations at 14:48. Evacuation Will Take Three Days", Herald Economy, 2016, URL: http://news. heraldcorp.com/view.php?ud=20160125001029
- Cerda, P., and Varoquaux, G., "Encoding High-Cardinality String Categorical Variables", ffhal02171256v1, 2019.
- Cohen, J., Cohen, P., West, S. G., and Aiken, L. S., "Applied Multiple Regression/Correlation Analysis for the Behavioral Sciences Third Edition", Lawrence Erlbaum Associates, Inc., Publishers, Mahwah, NJ, USA, 2003, pp.303-320.
- Moeyersoms, J., and Martens, D., "Including high-cardinality attributes in predictive models: A case study in churn prediction in the energy sector", Decision Support Systems, 72, 2015, pp.72-81. https://doi.org/10.1016/j.dss.2015.02.007
- Claesen, M., and De Moor, B., "Hyperparameter Search in Machine Learning", 2015, arXiv:1502.02127
- Cao, Y., and Wang, L., "Automatic selection of t -SNE Perplexity", 2017, arXiv:1708.03229
- Maaten, L. V. D., "Barnes-Hut-SNE", 2013, arXiv:1301.3342v2
- Aggarwal, C. C., Hinneburg, A., and Keim, D. A., "On The Surprising Behavior of Distance Metrics in High Dimensional Space", Van den Bussche J., Vianu V. (Eds.) Database Theory, ICDT 2001, Berlin, Heidelberg, 2001, pp.420-434.
- Kang, D. H., "The Strongest Cold Wave in 15 Years, Gimpo, Gimhae Airport's Curfew Suspension, Historical Overnight Operations", Seoul Economy, 2016, URL: https://www.sedaily.com/NewsVIew/1KRCIE4WAQ