DOI QR코드

DOI QR Code

A Study on the Visualization of an Airline's Fleet State Variation

항공사 기단의 상태변화 시각화에 관한 연구

  • 이용화 (한국항공대학교 항공교통물류학과) ;
  • 이주환 (한국항공대학교 항공교통물류학과) ;
  • 이금진 (한국항공대학교 항공교통물류학부)
  • Received : 2021.05.03
  • Accepted : 2021.05.25
  • Published : 2021.06.30

Abstract

Airline schedule is the most basic data for flight operations and has significant importance to an airline's management. It is crucial to know the airline's current schedule status in order to effectively manage the company and to be prepared for abnormal situations. In this study, machine learning techniques were applied to actual schedule data to examine the possibility of whether the airline's fleet state could be artificially learned without prior information. Given that the schedule is in categorical form, One Hot Encoding was applied and t-SNE was used to reduce the dimension of the data and visualize them to gain insights into the airline's overall fleet status. Interesting results were discovered from the experiments where the initial findings are expected to contribute to the fields of airline schedule health monitoring, anomaly detection, and disruption management.

Keywords

Acknowledgement

본 연구는 국토교통과학기술진흥원의 "데이터기반 항공교통관리 기술개발" 과제의 일환으로 수행되었으며 지원에 감사드립니다.

References

  1. Gurkan, H., Gurel, S., and Akturk, M. S., "An integrated approach for airline scheduling, aircraft fleeting and routing with cruise speed control", Transportation Research Part C 68, 2016, pp.38-57. https://doi.org/10.1016/j.trc.2016.03.002
  2. Barnhart, C., and Cohn, A., "Airline schedule planning: Accomplishments and opportunities", Manufacturing & Service Operations Management, 6(1) Winter, 2004, pp.3-22. https://doi.org/10.1287/msom.1030.0018
  3. Evler, J., Asadi, E., Preis, H., and Fricke, H., "Airline ground operations: Optimal schedule recovery with uncertain arrival times", Journal of Air Transport Management 92, 2021, DOI: 10.1016/j.jairtraman.2021.102021
  4. Clarke, M. D. D., "Irregular airline operations: A review of the state-of-the-practice in airline operations control centers", Journal of Air Transport Management 4, 1998, pp.67-76. https://doi.org/10.1016/S0969-6997(98)00012-X
  5. Mathaisel, D. F. X., "Decision support for airline system operations control and irregular operations", Computers & Operations Research, 23(11), 1996, pp.1083-1098. https://doi.org/10.1016/0305-0548(96)00007-X
  6. Wilson, J. M., "Gantt charts: A centenary appreciation", European Journal of Operational Research, 149, 2003, pp.430-437. https://doi.org/10.1016/S0377-2217(02)00769-5
  7. Jo, J., Huh, J., Park, J., Kim, B., and Seo, J., "LiveGantt: Interactively visualizing a large manufacturing schedule", IEEE Transactions on Visualization and Computer Graphics, 20(12), 2014.
  8. Shihab, S. A. M., Logemann, C., Thomas, D. G., and Wei, P., "Autonomous airline revenue management: A deep reinforcement learning approach to seat inventory control and overbooking", arXiv:1902.06824 [cs.AI], 2009.
  9. Provost, F., and Fawcett, T, "Data science and its relationship to big data and datadriven decision making", Mary Ann Liebert, Inc., 1(1), Feb. 13, 2013.
  10. DeGiovanni, J. J., "Seeing the data: United airlines implements new methods of analyzing safety data and improving performance", Flight Safety Foundation, 2017, https://flightsafety.org/asw-article/seeing-the-data
  11. Davenport, T. H., "At the big data crossroads: Turning towards a smarter travel experience", Amadeus IT Group, 2013, https://amadeus. com/documents/en/blog/pdf/2013/07/amadeus-big-data-report.pdf
  12. Lufthansa Systems, "Manage Your Airline Operations by Exception", Lufthansa Systems GmbH & Co. KG, 2015, https://www.lhsys tems.com/static/dde9d5c2f582d72ba75c3cf938346263/pb_netline_ops_0.pdf
  13. Mitchell, T. M., "Machine Learning", McGrawHill Science, Engineering, Math, New York, NY, USA, 1997, pp.2.
  14. Jolliffe, I. T., "Principal Component Analysis, Second Edition", Springer Verlag, New York, NY, 2002, pp.10-28.
  15. Lu, H., Plataniotis, K. N., and Venetsanopoulos, A. N., "MPCA: Multilinear principal component analysis of tensor objects", IEEE Transactions on Neural Networks, 19(1), 2008.
  16. Platzer, A., "Visualization of SNPs with t - SNE", PLoS ONE 8(2), 2013, e56883, DOI: 10.1371/journal.pone.0056883
  17. Sammon Jr, J. W., "A nonlinear mapping for data structure analysis", IEEE Transactions on Computers, C-18(5), 1969.
  18. Tenenbaum, J. B., Silva, V. D., and Langford, J. C., "A global geometric framework for nonlinear dimensionality reduction", Science, 290, 2000, pp.2319-2323. https://doi.org/10.1126/science.290.5500.2319
  19. Maaten, L. V. D., and Hinton, G., "Visualizing data using t -SNE", Journal of Machine Learning Research, 9, 2008, pp.2579-2605.
  20. Kobak, D., and Berens, P., "The art of using t -SNE for Single-cell Transcriptomics", Nature Communications 10(5416), 2019, DOI: https: //doi.org/10.1038/s41467-019-13056-x
  21. Barratt, S. T., Kochenderfery, M. J., and Boyd, S. P., "Learning probabilistic trajectory models of aircraft in terminal airspace from position data", IEEE Transactions on Intelligent Transportation Systems, 2019, DOI: https://doi.org/10.1109/TITS.2018.2877572
  22. Hong, S., and Lee, K., "Trajectory prediction for vectored area navigation arrivals", Journal of Aerospace Informations Systems, 12(7), 2015.
  23. Hinton, G. E., and Roweis, S. T., "Stochastic Neighbor Embedding", Advances in Neural Information Processing Systems, The MIT Press, Vol. 15, Cambridge, MA, USA, 2002, pp.833-840.
  24. Wattenberg, M., Viegas, F., and Johnson, I., "How to use t -SNE effectively", Distill, 2016, DOI: http://doi.org/10.23915/distill.00002
  25. Kim, A. M., "Jeju Airport Resumes Operations at 14:48. Evacuation Will Take Three Days", Herald Economy, 2016, URL: http://news. heraldcorp.com/view.php?ud=20160125001029
  26. Cerda, P., and Varoquaux, G., "Encoding High-Cardinality String Categorical Variables", ffhal02171256v1, 2019.
  27. Cohen, J., Cohen, P., West, S. G., and Aiken, L. S., "Applied Multiple Regression/Correlation Analysis for the Behavioral Sciences Third Edition", Lawrence Erlbaum Associates, Inc., Publishers, Mahwah, NJ, USA, 2003, pp.303-320.
  28. Moeyersoms, J., and Martens, D., "Including high-cardinality attributes in predictive models: A case study in churn prediction in the energy sector", Decision Support Systems, 72, 2015, pp.72-81. https://doi.org/10.1016/j.dss.2015.02.007
  29. Claesen, M., and De Moor, B., "Hyperparameter Search in Machine Learning", 2015, arXiv:1502.02127
  30. Cao, Y., and Wang, L., "Automatic selection of t -SNE Perplexity", 2017, arXiv:1708.03229
  31. Maaten, L. V. D., "Barnes-Hut-SNE", 2013, arXiv:1301.3342v2
  32. Aggarwal, C. C., Hinneburg, A., and Keim, D. A., "On The Surprising Behavior of Distance Metrics in High Dimensional Space", Van den Bussche J., Vianu V. (Eds.) Database Theory, ICDT 2001, Berlin, Heidelberg, 2001, pp.420-434.
  33. Kang, D. H., "The Strongest Cold Wave in 15 Years, Gimpo, Gimhae Airport's Curfew Suspension, Historical Overnight Operations", Seoul Economy, 2016, URL: https://www.sedaily.com/NewsVIew/1KRCIE4WAQ