Acknowledgement
이 논문 또는 저서는 2019년 대한민국 교육부와 한국연구재단의 지원을 받아 수행된 연구임(NRF-2019S1A3A2098438)
References
- 강현모(2017). 투자자의 손실회피 성향과 해석수준이 금융상품 태도에 미치는 영향. 지식경영연구, 18(1), 49-65. https://doi.org/10.15813/kmr.2017.18.1.003
- 김명종 (2009). 정량 추론과 정성 추론의 통합 메카니즘: 주가예측의 적용. 지식경영연구, 10(2), 35-48. https://doi.org/10.15813/KMR.2009.10.2.003
- 송한진, 최흥식, 김선웅, 오수훈 (2019). AI의 LSTM기법을 이용한 금융시계열 데이터 변동성 예측방법 연구. 한국지식정보기술학회 논문지, 14(6), 665-673.
- 신동하, 최광호, 김창복 (2017). RNN과 LSTM을 이용한 주가 예측을 향상을 위한 딥러닝 모델. 한국정보기술학회논문지, 15(10), 9-16. https://doi.org/10.14801/jkiit.2017.15.10.9
- 신택수, 홍태호 (2004). 인공신경망과 로짓모형을 통합한 부실확률맵기반 신용등급화에 관한 연구. 회계저널, 13(3), 1-26.
- 이기광, 조수지, 민경수, 양철원 (2019). 비트코인 가격의 결정요인: 한국시장에 대한 실증분석. 한국증권학회지, 48(4), 393-415.
- 이준식, 김건우, 박도형 (2018). 비트코인 가격 변화에 관한 실증분석: 소비자, 산업, 그리고 거시변수를 중심으로. 지능정보연구, 24(2), 195-220. https://doi.org/10.13088/JIIS.2018.24.2.195
- 임병진 (2019). 비트코인의 가격변화가 한국 국고채 시장에 미친 상호 영향에 관한 실증적 연구. e-비즈니스연구, 20(5), 143-154.
- 최형규, 이상용 (2020). 재무제표 주석의 텍스트 분석 통한 재무 비율 예측 향상 연구. 지식경영연구, 21(2), 177-196. https://doi.org/10.15813/KMR.2020.21.2.010
- 홍태호, 김은미 (2010). 데이터마이닝을 이용한 세분화된 고객집단의 프로모션 고객반응 예측. Information Systems Review, 12(2), 75-88.
- 홍태호, 박지영 (2009). 사례기반추론을 이용한 다이렉트 마케팅의 고객반응예측모형의 통합. 정보시스템연구, 18(3), 375-399.
- Bakar, N. A., Rosbi, S., & Uzaki, K. (2017). Cryptocurrency Framework Diagnostics from Islamic Finance Perspective: A New Insight of Bitcoin System Transaction. International Journal of Management Science and Business Administration, 4(1), 19-28. https://doi.org/10.18775/ijmsba.1849-5664-5419.2014.41.1003
- Bollen, J., Mao, H., & Zeng, X. (2011). Twitter mood predicts the stock market. Journal of Computational Science, 2(1), 1-8. https://doi.org/10.1016/j.jocs.2010.12.007
- Chen, Z., Li, C., & Sun, W. (2020) Bitcoin price prediction using machine learning: An approach to sample dimension engineering, Journal of Computation and Applied Mathematics, 365, 112395. https://doi.org/10.1016/j.cam.2019.112395
- Garg, S. (2018). Autoregressive integrated moving average model based prediction of bitcoin close price. In 2018 International Conference on Smart Systems and Inventive Technology (ICSSIT). 473-478.
- Hayes, A. S. (2018). Bitcoin price and its marginal cost of production: support for a fundamental value, Applied Economics Letters, 26(7), 554-560. https://doi.org/10.1080/13504851.2018.1488040
- Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural computation, 9(8), 1735-1780. https://doi.org/10.1162/neco.1997.9.8.1735
- Jang, H., & Lee, J.(2018). An empirical study on modeling and prediction of Bitcoin prices with bayesian neural networks based on Blockchain information. IEEE Access, 6(1), 5427-5437. https://doi.org/10.1109/ACCESS.2017.2779181
- Ji, S., Kim, J., & Im, H. (2019). A comparative study of Bitcoin price prediction using deep learning. Mathematics, 7(10), 898. https://doi.org/10.3390/math7100898
- Jun, J., & Yeo, E. (2014). Understanding Bitcoin: From the Perspective of Monetary Economics. Korea Busines Review, 18(4), 21-239.
- Kristoufek, L. (2015) What are the main drivers of the Bitcoin price? Evidence from wavelet coherence analysis. PLoS ONE, 10(4), 1-15. https://doi.org/10.1371/journal.pone.0123923
- Lamothe-Fernandez, P., Alaminos, D., Lamothe-Lopez, P., & Fernandez-Gamez, M. A. (2020). Deep Learning Methods for Modeling Bitcoin Price. Mathematics, 8(8), 1245. https://doi.org/10.3390/math8081245
- Liu, B. (2010). Sentiment analysis and subjectivity. Handbook of Natural Language Processing, N. Indurkhya and F. J. Damerau, eds.
- Mallqui, D. C., & Fernandes, R. A. (2019). Predicting the direction, maximum, minimum and closing prices of daily Bitcoin exchange rate using machine learning techniques. Applied Soft Computing, 75(1), 596-606 https://doi.org/10.1016/j.asoc.2018.11.038
- McNally, S., Roche, J., & Caton, S. (2018). Predicting the price of bitcoin using machine learning. In 2018 26th Euromicro International Conference on Parallel, Distributed and Network-based Processing, IEEE, 339-343.
- Mittal, A., Dhiman, V., Singh, A., & Prakash, C. (209). Short-term bitcoin price fluctuation prediction using social media and web search data. 2019 Twelfth International Conference on Contemporary Computing (IC3). IEEE 1-6.
- Nakamoto, S., & Bitcoin, A. (2008). A peer-to-peer electronic cash system. Bitcoin. URL: https://bitcoin.org/bitcoin.pdf.
- Patel, M. M., Tanwar, S., Gupta, R., & Kumar, N. (2020). A deep learning-based cryptocurrency price prediction scheme for financial institutions. Journal of Information Security and Applications, 55, 102583. https://doi.org/10.1016/j.jisa.2020.102583
- Roy, S., Nanjiba, S., & Chakrabarty, A. (2018). Bitcoin price forecasting using time series analysis. In 2018 21st International Conference of Computer and Information Technology (ICCIT). IEEE. 1-5.
- Schumaker, R. P., & Chen, H. (2009). A quantitative stock prediction system based on financial news. Information Processing & Management, 45(5), 571-583. https://doi.org/10.1016/j.ipm.2009.05.001
- Shin, D. H., & Kim, Y. M. (2016). The Factors Influencing Intention to Use Bit Coin of Domestic Consumers. The Journal of the Korea Contents Association, 16(1), 24-41. https://doi.org/10.5392/JKCA.2016.16.01.024
- Thies, S., & Molnar, P. (2018). Bayesian change point analysis of Bitcoin returns. Finance Research Letters, 27, 223-227 https://doi.org/10.1016/j.frl.2018.03.018
- Versace, M., Bhatt, R., Hinds, O., & Shiffer, M. (2004). Predicting the exchange traded fund DIA with a combination of genetic algorithm and neural networks. Expert Systems with Applications, 27(3), 417-425. https://doi.org/10.1016/j.eswa.2004.05.018
- Wirawan, I. M., Widiyaningtyas, T., & Hasan, M. M. (2019). Short term prediction on bitcoin price using arima method. In 2019 International Seminar on Application for Technology of Information and Communication (iSemantic). IEEE. 260-5.
- http://www.investing.com/