과제정보
The research described in this paper is financially supported by the National Key Basic Research Program of China (Grant No. 2012CB026205), the National Natural Science Foundation of China (Grant No. 51608264; 51778288), the Transportation Science and Technology Project of Jiangsu Province (Grant No. 2014Y01), the China Scholarship Council (Grant No. 201908320391), and the Cultivation Program for the Excellent Doctoral Dissertation of Nanjing Tech University (Grant No. 202009).
참고문헌
- Akbas, S.D. (2020), "Dynamic responses of laminated beams under a moving load in thermal environment", Steel Compos. Struct., 35(6), 729-737. https://doi.org/10.12989/scs.2020.35.6.729.
- Aydogdu, M. (2009), "A general nonlocal beam theory: Its application to nanobeam bending, buckling and vibration", Phys. E Low-Dimensional Syst. Nanostruct., 41(9), 1651-1655. https://doi.org/10.1016/j.physe.2009.05.014.
- Babaee, A., Sadighi, M., Nikbakht, A. and Alimirzaei, S. (2018), "Generalized differential quadrature nonlinear buckling analysis of smart SMA/FG laminated beam resting on nonlinear elastic medium under thermal loading", J. Therm. Stress., 41(5), 583-607. https://doi.org/10.1080/01495739.2017.1408048.
- Buchanan, A.H. and Abu, A.K. (2017), Structural Design for Fire Safety, Wiley, Chichester, UK.
- Ebrahimi, F. and Barati, M.R. (2016), "Vibration analysis of nonlocal beams made of functionally graded material in thermal environment", Eur. Phys. J. Plus, 131(8), 279. https://doi.org/10.1140/epjp/i2016-16279-y.
- Eurocode (2004), Design of concrete structures. Part 1.2: General rules - structural fire design, European Committee for Standardization; Brussels, Belgium.
- Eurocode (2005), Design of steel structures. Part 1.2: General rules - structural fire design, European Committee for Standardization; Brussels, Belgium.
- Firmo, J.P., Correia, J.R. and Bisby, L.A. (2015), "Fire behaviour of FRP-strengthened reinforced concrete structural elements: A state-of-the-art review", Compos. Part B Eng., 80, 198-216. https://doi.org/10.1016/j.compositesb.2015.05.045.
- Fu, Y., Zhong, J., Shao, X. and Chen, Y. (2015), "Thermal postbuckling analysis of functionally graded tubes based on a refined beam model", Int. J. Mech. Sci., 96-97, 58-64. https://doi.org/10.1016/j.ijmecsci.2015.03.019.
- Gu, L., Qin, Z. and Chu, F. (2015), "Analytical analysis of the thermal effect on vibrations of a damped Timoshenko beam", Mech. Syst. Signal Pr., 60-61, 619-643. https://doi.org/10.1016/j.ymssp.2014.11.014.
- Gunda, J.B. (2014), "Thermal post-buckling & large amplitude free vibration analysis of Timoshenko beams: Simple closedform solutions", Appl. Math. Model., 38(17-18), 4548-4558. https://doi.org/10.1016/j.apm.2014.02.019.
- Hetnarski, R.B. and Eslami, M.R. (2009), Thermal Stresses - Advanced Theory and Applications, Springer, Dordrecht, Netherlands.
- Jun, L., Li, J. and Xiaobin, L. (2017), "A spectral element model for thermal effect on vibration and buckling of laminated beams based on trigonometric shear deformation theory", Int. J. Mech. Sci., 133, 100-111. https://doi.org/10.1016/j.ijmecsci.2017.07.059
- Keibolahi, A., Kiani, Y. and Eslami, M.R. (2018), "Nonlinear rapid heating of shallow arches", J. Therm. Stress., 41(10-12), 1244-1258. https://doi.org/10.1080/01495739.2018.1494522.
- Kocaturk, T. and Akbas, S.D. (2013), "Thermal post-buckling analysis of functionally graded beams with temperature-dependent physical properties", Steel Compos. Struct., 15(5), 481-505. https://doi.org/10.12989/scs.2013.15.5.481.
- Kozlowski, M. and Bedon, C. (2021), "Sensitivity to input parameters of failure detection methods for out-of-plane loaded glass panels in fire", Fire, 4(1), 5. https://doi.org/10.3390/fire4010005.
- Li, X., Zhang, G., Kodur, V., He, S. and Huang, Q. (2021), "Designing method for fire safety of steel box bridge girders", Steel Compos. Struct., 38(6), 657-670. https://doi.org/10.12989/scs.2021.38.6.657.
- Lu, C., Chen, W. and Zhong, Z. (2006), "Two-dimensional thermoelasticity solution for functionally graded thick beams", Sci. China, Ser. G Phys. Astron., 49(4), 451-460. https://doi.org/10.1007/s11433-006-0451-2.
- Ma, Q., Guo, R., Zhao, Z., Lin, Z. and He, K. (2015), "Mechanical properties of concrete at high temperature-A review", Constr. Build. Mater., 93, 371-383. https://doi.org/10.1016/j.conbuildmat.2015.05.131.
- Mirjavadi, S.S., Afshari, B.M., Shafiei, N., Hamouda, A.M.S. and Kazemi, M. (2017), "Thermal vibration of two-dimensional functionally graded (2D-FG) porous Timoshenko nanobeams", Steel Compos. Struct., 25(4), 415-426. https://doi.org/10.12989/scs.2017.25.4.415.
- Pourasghar, A. and Chen, Z. (2019), "Effect of hyperbolic heat conduction on the linear and nonlinear vibration of CNT reinforced size-dependent functionally graded microbeams", Int. J. Eng. Sci., 137, 57-72. https://doi.org/10.1016/j.ijengsci.2019.02.002.
- Rahaeifard, M. (2016), "Static behavior of bilayer microcantilevers under thermal actuation", Int. J. Eng. Sci., 107, 28-35. https://doi.org/10.1016/j.ijengsci.2016.07.007.
- Reddy, J.N. (2007), "Nonlocal theories for bending, buckling and vibration of beams", Int. J. Eng. Sci., 45(2-8), 288-307. https://doi.org/10.1016/j.ijengsci.2007.04.004.
- Sankar, B.V. and Tzeng, J.T. (2002), "Thermal stresses in functionally graded beams", AIAA J., 40(6), 1228-1232. https://doi.org/10.2514/2.1775.
- Sayyad, A.S. and Ghugal, Y.M. (2017), "Bending, buckling and free vibration of laminated composite and sandwich beams: a critical review of literature", Compos. Struct., 171, 486-504. https://doi.org/10.1016/j.compstruct.2017.03.053.
- Sayyad, A.S. and Ghugal, Y.M. (2019), "Modeling and analysis of functionally graded sandwich beams: a review", Mech. Adv. Mater. Struct., 26(21), 1776-1795. https://doi.org/10.1080/15376494.2018.1447178.
- Shen, H.S., Lin, F. and Xiang, Y. (2017), "Nonlinear bending and thermal postbuckling of functionally graded graphene-reinforced composite laminated beams resting on elastic foundations", Eng. Struct., 140, 89-97. https://doi.org/10.1016/j.engstruct.2017.02.069
- Tanigawa, Y., Murakami, H. and Ootao, Y. (1989) Transient thermal stress analysis of a laminated composite beam, J. Therm. Stress., 12(1), 25-39. https://doi.org/10.1080/01495738908961952.
- Timoshenko, S. (1925), "Analysis of bi-metal thermostats", J. Opt. Soc. Am., 11(3), 233-255. https://doi.org/10.1364/JOSA.11.000233
- Xu, Y. and Zhou, D. (2012), "Two-dimensional thermoelastic analysis of beams with variable thickness subjected to thermomechanical loads", Appl. Math. Model., 36(12), 5818-5829. https://doi.org/10.1016/j.apm.2012.01.048.
- Zenkour, A.M. (2017), "Effect of temperature-dependent physical properties on nanobeam structures induced by ramp-type heating", KSCE J. Civ. Eng., 21(5), 1820-1828. https://doi.org/10.1007/s12205-016-1004-5.
- Zhang, P. and Fu, Y. (2013), "A higher-order beam model for tubes", Eur. J. Mech. A/Solids, 38, 12-19. https://doi.org/10.1016/j.euromechsol.2012.09.009.
- Zhang, Z., Zhou, D., Fang, H., Zhang, J. and Li, X. (2019), "Analysis of laminated beams with temperature-dependent material properties subjected to thermal and mechanical loads", Compos. Struct., 227, 111304. https://doi.org/10.1016/j.compstruct.2019.111304
- Zhang, Z., Zhou, D., Fang, H., Zhang, J. and Li, X. (2021), "Analysis of layered rectangular plates under thermomechanical loads considering temperature-dependent material properties", Appl. Math. Model., 92, 244-260. https://doi.org/10.1016/j.apm.2020.10.036.
- Zhang, Z., Zhou, D., Xu, X. and Li, X. (2020), "Analysis of thick beams with temperature-dependent material properties under thermomechanical loads", Adv. Struct. Eng., 23(9), 1838-1850. https://doi.org/10.1177/1369433220901810.
- Zhang, Z., Zhou, W., Zhou, D., Huo, R. and Xu, X. (2018), "Elasticity solution of laminated beams with temperature-dependent material properties under a combination of uniform thermo-load and mechanical loads", J. Cent. South Univ., 25(10), 2537-2549. https://doi.org/10.1007/s11771-018-3934-1.
- Zhong, J., Fu, Y., Wan, D. and Li, Y. (2016), "Nonlinear bending and vibration of functionally graded tubes resting on elastic foundations in thermal environment based on a refined beam model", Appl. Math. Model., 40(17-18), 7601-7614. https://doi.org/10.1016/j.apm.2016.03.031.