참고문헌
- Afshin, M. and Taheri-Behrooz, F. (2015), "Interlaminar stresses of laminated composite beams resting on elastic foundation subjected to transverse loading", Comput. Mater. Sci., 96, 439-447. https://doi.org/10.1016/j.commatsci.2014.06.027.
- Ahmadi, I. and Najafi, M. (2016), "Three-dimensional stresses analysis in rotating thin laminated composite cylindrical shells", Steel Compos. Struct., 22(5), 1193-1214. https://doi.org/10.12989/scs.2016.22.5.1193.
- Ahmadi, I. (2016), "Edge stresses analysis in thick composite panels subjected to axial loading using layerwise formulation", Struct. Eng. Mech., 57(4), 733-762. https://doi.org/10.12989/sem.2016.57.4.733.
- Ahmadi, I. (2018), "Three-dimensional and free-edge hygrothermal stresses in general long sandwich plates", Struct. Eng. Mech., 65(3), 275-290. https://doi.org/10.12989/sem.2018.65.3.275.
- Ahmadi, I. (2019), "Free edge stress prediction in thick laminated cylindrical shell panel subjected to bending moment", Appl. Math. Model., 65, 507-525. https://doi.org/10.1016/j.apm.2018.08.029.
- Ahmadi, I. (2018), "Three-dimensional stress analysis in torsion of laminated composite bar with general layer stacking", Eur. J. Mech.-A/Solids, 72, 252-267. https://doi.org/10.1016/j.euromechsol.2018.05.003.
- Aimmanee, S. and Batra, R.C. (2007), "Analytical solution for vibration of an incompressible isotropic linear elastic rectangular plate, and frequencies missed in previous solutions", J. Sound Vib., 302(3), 613-620. https://doi.org/10.1016/j.jsv.2006.11.029.
- Akgoz, B. and Civalek, O. (2011), "Buckling analysis of cantilever carbon nanotubes using the strain gradient elasticity and modified couple stress theories", J. Comput. Theor. Nanosci., 8(9), 1821-1827. https://doi.org/10.1166/jctn.2011.1888.
- Akgoz, B. and Civalek, O. (2011), "Nonlinear vibration analysis of laminated plates resting on nonlinear two-parameters elastic foundations", Steel Compos. Struct., 11(5), 403-421. https://doi.org/10.12989/scs.2011.11.5.403.
- Akgoz, B. and Civalek, O. (2011), "Strain gradient elasticity and modified couple stress models for buckling analysis of axially loaded micro-scaled beams", Int. J. Eng. Sci., 49(11), 1268-1280. https://doi.org/10.1016/j.ijengsci.2010.12.009.
- Akgoz, B. and Civalek, O. (2017), "A size-dependent beam model for stability of axially loaded carbon nanotubes surrounded by Pasternak elastic foundation", Compos. Struct., 176, 1028-1038. https://doi.org/10.1016/j.compstruct.2017.06.039.
- Akgoz, B. and Civalek, O. (2017), "Effects of thermal and shear deformation on vibration response of functionally graded thick composite microbeams", Compos. Part B: Eng., 129, 77-87. https://doi.org/10.1016/j.compositesb.2017.07.024.
- Asrari, R., Ebrahimi, F., Kheirikhah, M.M. and Safari, K.H. (2020), "Buckling analysis of heterogeneous magneto-electrothermo-elastic cylindrical nanoshells based on nonlocal strain gradient elasticity theory", Mech. Based Des. Struct. Machines, 1-24. https://doi.org/10.1080/15397734.2020.1728545.
- Anjomshoa, A. and Tahani, M. (2016), "Vibration analysis of orthotropic circular and elliptical nano-plates embedded in elastic medium based on nonlocal Mindlin plate theory and using Galerkin method", J. Mech. Sci. Technol., 30(6), 2463-2474. https://doi.org/10.1007/s12206-016-0506-x
- Ansari, R., Pourashraf, T., Gholami, R., Sahmani, S. and Ashrafi, M.A. (2015), "Size-dependent resonant frequency and flexural sensitivity of atomic force microscope microcantilevers based on the modified strain gradient theory", Int. J. Optomechatron., 9(2), 111-130. https://doi.org/10.1080/15599612.2015.1034900.
- Ansari, R., Pourashraf, T. and Gholami, R. (2015), "An exact solution for the nonlinear forced vibration of functionally graded nanobeams in thermal environment based on surface elasticity theory", Thin-Wall. Struct., 93, 169-176. https://doi.org/10.1016/j.tws.2015.03.013.
- Ansari, R., Gholami, R. and Sahmani, S. (2011), "Free vibration analysis of size-dependent functionally graded microbeams based on the strain gradient Timoshenko beam theory", Compos. Struct., 94(1), 221-228. https://doi.org/10.1016/j.compstruct.2011.06.024.
- Arani, A.G., Fereidoon, A. and Kolahchi, R. (2015), "Nonlinear surface and nonlocal piezoelasticity theories for vibration of embedded single-layer boron nitride sheet using harmonic differential quadrature and differential cubature methods", J. Intel. Mater. Syst. Struct., 26(10), 1150-1163. https://doi.org/10.1177%2F1045389X14538331. https://doi.org/10.1177%2F1045389X14538331
- Arefi, M. (2016), "Surface effect and non-local elasticity in wave propagation of functionally graded piezoelectric nano-rod excited to applied voltage", Appl. Math. Mech., 37(3), 289-302. https://doi.org/10.1007/s10483-016-2039-6.
- Arefi, M. and Zenkour, A.M. (2018), "Size-dependent vibration and electro-magneto-elastic bending responses of sandwich piezomagnetic curved nanobeams", Steel Compos. Struct., 29(5), 579-590. https://doi.org/10.12989/scs.2018.29.5.579.
- Aria, A.I. and Friswell, M.I. (2019), "A nonlocal finite element model for buckling and vibration of functionally graded nanobeams", Compos. Part B: Eng., 166, 233-246. https://doi.org/10.1016/j.compositesb.2018.11.071.
- Aydogdu, M. (2009), "A general nonlocal beam theory: its application to nanobeam bending, buckling and vibration", Physica E: Low-dimensional Syst. Nanostruct., 41(9), 1651-1655. https://doi.org/10.1016/j.physe.2009.05.014.
- Aydogdu, M. and Filiz, S. (2011), "Modeling carbon nanotubebased mass sensors using axial vibration and nonlocal elasticity", Physica E: Low-dimensional Syst. Nanostruct., 43(6), 1229-1234. https://doi.org/10.1016/j.physe.2011.02.006.
- Basar, Y., and Ding, Y. (1995), "Interlaminar stress analysis of composites: layer-wise shell finite elements including transverse strains", Composites Engineering, 5(5), 485-499. https://doi.org/10.1016/0961-9526(95)00020-N
- Behera, L. and Chakraverty, S. (2015), "Application of Differential Quadrature method in free vibration analysis of nanobeams based on various nonlocal theories", Comput. Math. with Appl., 69(12), 1444-1462. https://doi.org/10.1016/j.camwa.2015.04.010.
- Beni, Y.T., Mehralian, F. and Razavi, H. (2015), "Free vibration analysis of size-dependent shear deformable functionally graded cylindrical shell on the basis of modified couple stress theory", Compos. Struct., 120, 65-78. https://doi.org/10.1016/j.compstruct.2014.09.065.
- Bessaim, A., Houari, M.S.A., Bernard, F. and Tounsi, A. (2015), "A nonlocal quasi-3D trigonometric plate model for free vibration behaviour of micro/nanoscale plates", Struct. Eng. Mech., 56(2), 223-240. https://doi.org/10.12989/sem.2015.56.2.223.
- Bouafia, K., Kaci, A., Houari, M.S.A., Benzair, A. and Tounsi, A., (2017), "A nonlocal quasi-3D theory for bending and free flexural vibration behaviors of functionally graded nanobeams", Smart Struct. Syst., 19(2), 115-126. https://doi.org/10.12989/sss.2017.19.2.115.
- Boutaleb, S., Benrahou, K.H., Bakora, A., Algarni, A., Bousahla, A.A., Tounsi, A., Tounsi, A. and Mahmoud, S.R. (2019), "Dynamic analysis of nanosize FG rectangular plates based on simple nonlocal quasi 3D HSDT", Adv. Nano Res., 7(3), 191. http://dx.doi.org/10.12989/anr.2019.7.3.191.
- Chen, W.Q., Lu, C.F. and Bian, Z.G. (2004), "A mixed method for bending and free vibration of beams resting on a Pasternak elastic foundation", Appl. Math. Model., 28(10), 877-890. https://doi.org/10.1016/j.apm.2004.04.001.
- Civalek, O. and Acar, M.H. (2007), "Discrete singular convolution method for the analysis of Mindlin plates on elastic foundations", Int. J. Pressure Vess. Piping, 84(9), 527-535. https://doi.org/10.1016/j.ijpvp.2007.07.001.
- Civalek, O. (2008), "Vibration analysis of conical panels using the method of discrete singular convolution", Commun. Numer. Method. Eng., 24(3), 169-181. https://doi.org/10.1002/cnm.961.
- Civalek, O. and Demir, C. (2011a), "Bending analysis of microtubules using nonlocal Euler-Bernoulli beam theory", Appl. Math. Model., 35(5), 2053-2067. https://doi.org/10.1016/j.apm.2010.11.004.
- Civalek, O. and Demir, C. (2011b), "Buckling and bending analyses of cantilever carbon nanotubes using the Euler-Bernoulli beam theory based on non-local continuum model; technical note", Asian J. Civil Eng. (Building and Housing), 12(5), 651-661.
- Civalek, O. and Demir, C. (2016), "A simple mathematical model of microtubules surrounded by an elastic matrix by nonlocal finite element method", Appl. Math. Comput., 289, 335-352. https://doi.org/10.1016/j.amc.2016.05.034.
- Demir, C. and Civalek, O. (2017), "On the analysis of microbeams", Int. J. Eng. Sci., 121, 14-33. https://doi.org/10.1016/j.ijengsci.2017.08.016.
- Demir, C. and Civalek, O. (2017), "A new nonlocal FEM via Hermitian cubic shape functions for thermal vibration of nano beams surrounded by an elastic matrix", Compos. Struct., 168, 872-884. https://doi.org/10.1016/j.compstruct.2017.02.091.
- de Sciarra, F.M. (2014), "Finite element modelling of nonlocal beams", Physica E: Low-Dimensional Syst. Nanostruct., 59, 144-149. https://doi.org/10.1016/j.physe.2014.01.005.
- Ebrahimi, F., Barati, M.R. and Zenkour, A.M. (2018), "A new nonlocal elasticity theory with graded nonlocality for thermomechanical vibration of FG nanobeams via a nonlocal third-order shear deformation theory", Mech. Adv. Mater. Struct., 25(6), 512-522. https://doi.org/10.1080/15376494.2017.1285458.
- Ebrahimi, F. and Barati, M.R. (2016), "Wave propagation analysis of quasi-3D FG nanobeams in thermal environment based on nonlocal strain gradient theory", Appl. Phys. A, 122(9), 843. https://doi.org/10.1007/s00339-016-0368-1.
- El-Sayed, T.A. and Farghaly, S.H. (2016), "Exact vibration of Timoshenko beam combined with multiple mass spring subsystems", Struct. Eng. Mech., 57(6), 989-1014. http://dx.doi.org/10.12989/sem.2016.57.6.989.
- Eltaher, M.A., Emam, S.A. and Mahmoud, F.F. (2012), "Free vibration analysis of functionally graded size-dependent nanobeams", Appl. Math. Comput., 218(14), 7406-7420. https://doi.org/10.1016/j.amc.2011.12.090.
- Eltaher, M.A., Alshorbagy, A.E. and Mahmoud, F.F. (2013), "Vibration analysis of Euler-Bernoulli nanobeams by using finite element method", Appl. Math. Model., 37(7), 4787-4797. https://doi.org/10.1016/j.apm.2012.10.016.
- Eltaher, M.A., Khater, M.E. and Emam, S.A. (2016), "A review on nonlocal elastic models for bending, buckling, vibrations, and wave propagation of nanoscale beams", Appl. Math. Model., 40(5-6), 4109-4128. https://doi.org/10.1016/j.apm.2015.11.026.
- Eringen, A.C. and Edelen, D.G.B. (1972), "On nonlocal elasticity", Int. J. Eng. Sci., 10(3), 233-248. https://doi.org/10.1016/0020-7225(72)90039-0.
- Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54(9), 4703-4710. https://doi.org/10.1063/1.332803.
- Faroughi, S., Rahmani, A. and Friswell, M.I. (2020), "On wave propagation in two-dimensional functionally graded porous rotating nano-beams using a general nonlocal higher-order beam model", Appl. Math. Model., 80, 169-190. https://doi.org/10.1016/j.apm.2019.11.040.
- Ganapathi, M., Merzouki, T. and Polit, O. (2018), "Vibration study of curved nanobeams based on nonlocal higher-order shear deformation theory using finite element approach", Compos. Struct., 184, 821-838. https://doi.org/10.1016/j.compstruct.2017.10.066.
- Gao, Y., Xiao, W.S. and Zhu, H., (2019), "Nonlinear bending of functionally graded porous nanobeam subjected to multiple physical load based on nonlocal strain gradient theory", Steel Compos. Struct., 31(5), pp.469-488. https://doi.org/10.12989/scs.2019.31.5.469.
- Hu, Y.G., Liew, K.M., Wang, Q., He, X.Q. and Yakobson, B.I. (2008), "Nonlocal shell model for elastic wave propagation in single-and double-walled carbon nanotubes", J. Mech. Phys. Solids, 56(12), 3475-3485. https://doi.org/10.1016/j.jmps.2008.08.010.
- Houari, M.S.A., Bessaim, A., Bernard, F., Tounsi, A. and Mahmoud, S.R. (2018), "Buckling analysis of new quasi-3D FG nanobeams based on nonlocal strain gradient elasticity theory and variable length scale parameter", Steel Compos. Struct., 28(1), 13-24. https://doi.org/10.12989/scs.2018.28.1.013.
- Jandaghian, A.A. and Rahmani, O. (2017), "Vibration analysis of FG nanobeams based on third-order shear deformation theory under various boundary conditions", Steel Compos. Struct., 25(1), 67-78. https://doi.org/10.12989/scs.2017.25.1.067.
- Jomehzadeh, E., Noori, H.R. and Saidi, A.R. (2011), "The size-dependent vibration analysis of micro-plates based on a modified couple stress theory", Physica E: Low-dimensional Syst. Nanostruct., 43(4), 877-883. https://doi.org/10.1016/j.physe.2010.11.005.
- Kachapi, S.H.H., Dardel, M., Daniali, H.M. and Fathi, A. (2019), "Effects of surface energy on vibration characteristics of double-walled piezo-viscoelastic cylindrical nanoshell", Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 233(15), 5264-5279. https://doi.org/10.1177%2F0954406219845019. https://doi.org/10.1177%2F0954406219845019
- Khalid, H.M., Yasin, M.Y., and Khan, A.H. (2018), "Free Vibration Analysis of Multilayered Arches using a Layerwise Theory", Proceedings of the IOP Conference Series: Materials Science and Engineering, 377(1), 012168. https://doi.org/10.1088/1757-899X/377/1/012168.
- Khaniki, H.B. (2018), "Vibration analysis of rotating nanobeam systems using Eringen's two-phase local/nonlocal model", Physica E: Low-dimensional Syst. Nanostruct., 99, 310-319. https://doi.org/10.1016/j.physe.2018.02.008.
- Khayat, M., Poorveis, D. and Moradi, S. (2016), "Buckling analysis of laminated composite cylindrical shell subjected to lateral displacement-dependent pressure using semi-analytical finite strip method", Steel Compos. Struct., 22(2), 301-321. https://doi.org/10.12989/scs.2016.22.2.301.
- Kordkheili, S.H. and Soltani, Z. (2018), "A layerwise finite element for geometrically nonlinear analysis of composite shells", Compos. Struct., 186, 355-364. https://doi.org/10.1016/j.compstruct.2017.12.022.
- Lam, D.C., Yang, F., Chong, A.C.M., Wang, J. and Tong, P. (2003), "Experiments and theory in strain gradient elasticity", J. Mech. Phys. Solids, 51(8), 1477-1508. https://doi.org/10.1016/S0022-5096(03)00053-X.
- Li, X.F. and Wang, B.L. (2009), "Vibrational modes of Timoshenko beams at small scales", Appl. Phys. Lett., 94(10), 101903. https://doi.org/10.1063/1.3094130.
- Lim, C.W., Islam, M.Z. and Zhang, G. (2015), "A nonlocal finite element method for torsional statics and dynamics of circular nanostructures", Int. J. Mech. Sci., 94, 232-243. https://doi.org/10.1016/j.ijmecsci.2015.03.002.
- Lu, L., Guo, X. and Zhao, J. (2017), "Size-dependent vibration analysis of nanobeams based on the nonlocal strain gradient theory", Int. J. Eng. Sci., 116, 12-24. https://doi.org/10.1016/j.ijengsci.2017.03.006.
- Malekzadeh, P. and Shojaee, M. (2013), "Surface and nonlocal effects on the nonlinear free vibration of non-uniform nanobeams", Compos. Part B: Eng., 52, 84-92. https://doi.org/10.1016/j.compositesb.2013.03.046.
- Mindlin, R.D. and Eshel, N.N. (1968), "On first strain-gradient theories in linear elasticity", Int. J. Solid. Struct., 4(1), 109-124. https://doi.org/10.1016/0020-7683(68)90036-X.
- Mindlin, R.D. and Tiersten, H.F. (1962), "Effects of couple-stresses in linear elasticity", Arch. Rational Mech. Anal., 11, 415-448. https://doi.org/10.1007/BF00253946.
- Narendar, S., Ravinder, S. and Gopalakrishnan, S. (2012), "Strain gradient torsional vibration analysis of micro/nano rods", Int. J. Nano Dimension, 3(1), 1-17. https://doi.org/10.7508/IJND.2012.01.001.
- Norouzzadeh, A. and Ansari, R. (2017), "Finite element analysis of nano-scale Timoshenko beams using the integral model of nonlocal elasticity", Physica E: Low-dimensional Syst. Nanostruct., 88, 194-200. https://doi.org/10.1016/j.physe.2017.01.006.
- Nosier, A., Kapania, R.K. and Reddy, J.N. (1993), "Free vibration analysis of laminated plates using a layerwise theory", AIAA J., 31(12), 2335-2346. https://doi.org/10.2514/3.11933.
- Nosier, A. and Miri, A.K. (2010), "Boundary-layer hygrothermal stresses in laminated, composite, circular, cylindrical shell panels", Arch. Appl. Mech., 80(4), 413-440. https://doi.org/10.1007/s00419-009-0323-0.
- Numanoglu, H.M., Akgoz, B. and Civalek, O. (2018), "On dynamic analysis of nanorods", Int. J. Eng. Sci., 130, 33-50. https://doi.org/10.1016/j.ijengsci.2018.05.001.
- Numanoglu, H.M. and Civalek, O. (2019), "On the torsional vibration of nanorods surrounded by elastic matrix via nonlocal FEM", Int. J. Mech. Sci., 161, 105076. https://doi.org/10.1016/j.ijmecsci.2019.105076.
- Park, S.K. and Gao, X.L. (2006), "Bernoulli-Euler beam model based on a modified couple stress theory", J. Micromech. Microeng., 16(11), 2355. https://doi.org/10.1088/0960-1317/16/11/015.
- Peddieson, J., Buchanan, G.R. and McNitt, R.P. (2003), "Application of nonlocal continuum models to nanotechnology", Int. J. Eng. Sci., 41(3-5), 305-312. https://doi.org/10.1016/S0020-7225(02)00210-0.
- Phadikar, J.K. and Pradhan, S.C. (2010), "Variational formulation and finite element analysis for nonlocal elastic nanobeams and nanoplates", Comput. Mater. Sci., 49(3), 492-499. https://doi.org/10.1016/j.commatsci.2010.05.040.
- Plagianakos, T.S. and Saravanos, D.A. (2009), "Higher-order layerwise laminate theory for the prediction of interlaminar shear stresses in thick composite and sandwich composite plates", Compos. Struct., 87(1), 23-35. https://doi.org/10.1016/j.compstruct.2007.12.002.
- Pourkermani, A.G., Azizi, B. and Pishkenari, H.N. (2020), "Vibrational analysis of Ag, Cu and Ni nanobeams using a hybrid continuum-atomistic model", Int. J. Mech. Sci., 165, 105208. https://doi.org/10.1016/j.ijmecsci.2019.105208.
- Ragb, O., Mohamed, M. and Matbuly, M.S. (2019), "Free vibration of a piezoelectric nanobeam resting on nonlinear Winkler-Pasternak foundation by quadrature methods", Heliyon, 5(6), e01856. https://doi.org/10.1016/j.heliyon.2019.e01856.
- Rahmani, O. and Pedram, O. (2014), "Analysis and modeling the size effect on vibration of functionally graded nanobeams based on nonlocal Timoshenko beam theory", Int. J. Eng. Sci., 77, 55-70. https://doi.org/10.1016/j.ijengsci.2013.12.003.
- Rahmani, O., Refaeinejad, V. and Hosseini, S.A.H. (2017), "Assessment of various nonlocal higher order theories for the bending and buckling behavior of functionally graded nanobeams", Steel Compos. Struct., 23(3), 339-350. https://doi.org/10.12989/scs.2017.23.3.339.
- Rakocevic, M., and Popovic, S. (2018), "Bending analysis of simply supported rectangular laminated composite plates using a new computation method based on analytical solution of layerwise theory", Archive of Applied Mechanics, 88(5), 671-689. https://doi.org/10.1007/s00419-017-1334-x
- Reddy, J.N. (2007), "Nonlocal theories for bending, buckling and vibration of beams", Int. J. Eng. Sci., 45(2-8), 288-307. https://doi.org/10.1016/j.ijengsci.2007.04.004.
- Reddy, J.N. and Pang, S.D. (2008), "Nonlocal continuum theories of beams for the analysis of carbon nanotubes", J. Appl. Phys., 103(2), 023511. https://doi.org/10.1063/1.2833431.
- Reddy, J.N. (1989), "On the generalization of displacement-based laminate theories", Appl. Mech. Rev., 42(11), S213-S222. https://doi.org/10.1115/1.3152393.
- Ren, S. and Zhao, G. (2019), "High-Order Layerwise Formulation of Transverse Shear Stress Field for Laminated Composite Beams", AIAA J., 57(5), 2171-2184. https://doi.org/10.2514/1.J057412.
- Roque, C.M.C., Ferreira, A.J.M. and Reddy, J.N. (2011), "Analysis of Timoshenko nanobeams with a nonlocal formulation and meshless method", Int. J. Eng. Sci., 49(9), 976-984. https://doi.org/10.1016/j.ijengsci.2011.05.010.
- Romano, G., Barretta, R. and Diaco, M. (2017), "On nonlocal integral models for elastic nano-beams", Int. J. Mech. Sci., 131, 490-499. https://doi.org/10.1016/j.ijmecsci.2017.07.013.
- Sahmani, S., Aghdam, M.M. and Bahrami, M. (2015), "On the free vibration characteristics of postbuckled third-order shear deformable FGM nanobeams including surface effects", Compos. Struct., 121, 377-385. https://doi.org/10.1016/j.compstruct.2014.11.033.
- Salehipour, H. and Shahsavar, A. (2018), "A three dimensional elasticity model for free vibration analysis of functionally graded micro/nano plates: Modified strain gradient theory", Compos. Struct., 206, 415-424. https://doi.org/10.1016/j.compstruct.2018.08.033.
- Sayyad, A.S. and Ghugal, Y.M. (2017), "Bending, buckling and free vibration of laminated composite and sandwich beams: A critical review of literature", Compos. Struct., 171, 486-504. https://doi.org/10.1016/j.compstruct.2017.03.053.
- Seifoori, S. and Liaghat, G.H. (2013), "Low velocity impact of a nanoparticle on nanobeams by using a nonlocal elasticity model and explicit finite element modeling", Int. J. Mech. Sci., 69, 85-93. https://doi.org/10.1016/j.ijmecsci.2013.01.030.
- Sobhy, M. and Zenkour, A.M. (2019), "Porosity and inhomogeneity effects on the buckling and vibration of double-FGM nanoplates via a quasi-3D refined theory", Compos. Struct., 220, 289-303. https://doi.org/10.1016/j.compstruct.2019.03.096.
- Srinivas, S., Rao, C.J. and Rao, A.K. (1970), "An exact analysis for vibration of simply-supported homogeneous and laminated thick rectangular plates", J. Sound Vib., 12(2), 187-199. https://doi.org/10.1016/0022-460X(70)90089-1.
- Tahani, M. (2007), "Analysis of laminated composite beams using layerwise displacement theories", Compos. Struct., 79(4), 535-547. https://doi.org/10.1016/j.compstruct.2006.02.019.
- Tan, G., Shan, J., Wu, C. and Wang, W. (2017), "Free vibration analysis of cracked Timoshenko beams carrying spring-mass systems", Struct. Eng. Mech., 63(4), 551-565. https://doi.org/10.12989/sem.2017.63.4.551.
- Thai, C.H., Ferreira, A.J.M., Wahab, M.A. and Nguyen-Xuan, H. (2016), "A generalized layerwise higher-order shear deformation theory for laminated composite and sandwich plates based on isogeometric analysis", Acta Mechanica, 227(5), 1225-1250. https://doi.org/10.1007/s00707-015-1547-4.
- Thai, H.T. (2012), "A nonlocal beam theory for bending, buckling, and vibration of nanobeams", Int. J. Eng. Sci., 52, 56-64. https://doi.org/10.1016/j.ijengsci.2011.11.011.
- Topal, U. (2012), "Frequency optimization for laminated composite plates using extended layerwise approach", Steel Compos. Struct., 12(6), 541-548. https://doi.org/10.12989/scs.2012.12.6.541.
- Toupin, R.A. (1964), "Theories of elasticity with couple-stress. Arch. Ration. Mech. Anal., 17(2), 85-112. https://doi.org/10.1007/BF00253050.
- Trabelssi, M., El-Borgi, S., Fernandes, R. and Ke, L.L. (2019), "Nonlocal free and forced vibration of a graded Timoshenko nanobeam resting on a nonlinear elastic foundation", Compos. Part B: Eng., 157, 331-349. https://doi.org/10.1016/j.compositesb.2018.08.132.
- Tuna, M. and Kirca, M. (2016), "Exact solution of Eringen's nonlocal integral model for bending of Euler-Bernoulli and Timoshenko beams", Int. J. Eng. Sci., 105, 80-92. https://doi.org/10.1016/j.ijengsci.2016.05.001.
- Wang, C.M., Kitipornchai, S., Lim, C.W. and Eisenberger, M. (2008), "Beam bending solutions based on nonlocal Timoshenko beam theory", J. Eng. Mech., 134(6), 475-481. https://doi.org/10.1061/(ASCE)0733-9399(2008)134:6(475).
- Wang, C.M., Zhang, Y.Y. and He, X.Q. (2007), "Vibration of nonlocal Timoshenko beams", Nanotechnology, 18(10), 105401. https://doi.org/10.1088/0957-4484/18/10/105401.
- Wang, G.F., Feng, X.Q. and Yu, S.W. (2007), "Surface buckling of a bending microbeam due to surface elasticity", EPL (Europhysics Letters), 77(4), 44002. https://doi.org/10.1209/0295-5075/77/44002.
- Wang, J., Shen, H., Zhang, B., Liu, J. and Zhang, Y. (2018), "Complex modal analysis of transverse free vibrations for axially moving nanobeams based on the nonlocal strain gradient theory", Physica E: Low-dimensional Syst. Nanostruct., 101, 85-93. https://doi.org/10.1016/j.physe.2018.03.017.
- Wang, L. (2010), "Wave propagation of fluid-conveying single-walled carbon nanotubes via gradient elasticity theory", Comput. Mater. Sci., 49(4), 761-766. https://doi.org/10.1016/j.commatsci.2010.06.019.
- Xu, L. and Yang, Q. (2015), "Multi-field coupled dynamics for a micro beam", Mech. Based Des. Struct., 43(1), 57-73. https://doi.org/10.1080/15397734.2014.928221.
- Yang, F.A.C.M., Chong, A.C.M., Lam, D.C.C. and Tong, P. (2002), "Couple stress based strain gradient theory for elasticity", Int. J. Solid. Struct., 39(10), 2731-2743. https://doi.org/10.1016/S0020-7683(02)00152-X.
- Zhang, C. and Chang, R. (2019), "Improved Layerwise theory method application to stress analysis for composite tube in pure bending", Proceedings of the IOP Conference Series: Materials Science and Engineering, 474(1), 012055. https://doi.org/10.1088/1757-899X/474/1/012055.
- Zhang, G.Y. and Gao, X.L. (2019), "A non-classical Kirchhoff rod model based on the modified couple stress theory", Acta Mechanica, 230(1), 243-264. https://doi.org/10.1007/s00707-018-2279-z.