DOI QR코드

DOI QR Code

Frequency study of porous FGPM beam on two-parameter elastic foundations via Timoshenko theory

  • Huang, Wenhua (School of Civil Engineering and Architecture, Shaanxi University of Technology) ;
  • Tahouneh, Vahid (Young Researchers and Elite Club, Islamshahr Branch, Islamic Azad University)
  • 투고 : 2020.06.26
  • 심사 : 2021.05.31
  • 발행 : 2021.07.10

초록

The goal of this study is to fill this apparent gap in the area about investigating free vibration of Functionally Graded Piezoelectric Materials (FGPMs) nanobeams with porosity resting on two-parameter elastic foundations, under voltage load considering Timoshenko beam model and nonlocal theory. The elastic foundation is considered as a Pasternak model with adding a shear layer to the Winkler model. The electromechanical and mechanical properties of the nanobeam (such as elastic, piezoelectric, dielectric coefficients and mass density) are FG in the thickness direction of the beam. Based on Hamilton principle, governing equations of the problem are derived. The Differential Quadrature Method (DQM) for solution of these equations are employed to determine the natural frequencies of the FGPM nanobeams at different Boundary Conditions (B.C.s). The influences of supporting conditions, the porosity coefficient and patterns including even and uneven, nonlocal parameter, Winkler foundation modulus, shear elastic foundation modulus, external voltage and power-law index on the electromechanical vibration characteristics of the FGPM nanobeams are discussed in details. It is found that the FG index and nonlocal parameter will reduce the natural frequencies of the FG nanobeam, while the Winkler and Pasternak moduli of the foundation show an opposite tendency.

키워드

과제정보

This paper is supported by the 2021 Shaanxi Province Philosophy and Social Sciences Major Theoretical and Practical Issues Research Project "Research on Scientific Evaluation and Innovative Utilization of Modern Architectural Heritage in the Upper and Middle Reaches of Han River" and supported by the 2016 Soft Science Research Project of Shaanxi Provincial Department of Science and Technology titled "Research on the Livability of Immigrant Settlement Area in Southern Shaanxi Based on Post-use Evaluation" with Item Number: 2016RKM112.

참고문헌

  1. Afrookhteh, S.S., Fathi, A., Naghdipour, M. and Alizadeh Sahraei, A. (2016), "An experimental investigation of the effects of weight fractions of reinforcement and timing of hardener addition on the strain sensitivity of carbon nanotube/polymer composites", U.P.B. Sci. Bull., Series B, 78(4), 121-130.
  2. Afrookhteh, S.S., Shakeri, M., Baniassadi, M. and Alizadeh Sahraei, A. (2018), "Microstructure Reconstruction and Characterization of the Porous GDLs for PEMFC Based on Fibers Orientation Distribution", Fuel Cells, 18(2), https://doi.org/10.1002/fuce.201700239.
  3. Ahmadi, S.M., Campoli, G., Yavari, S.A., Sajadi, B., Wauthle, R., Schrooten, J., Weinans, H. and Zadpoor, A.A. (2014), "Mechanical behavior of regular open-cell porous biomaterials made of diamond lattice unit cells", J. Mech. Behav. Biomed. Mater., 34, 106-115. https://doi.org/10.1016/j.jmbbm.2014.02.003.
  4. Ahmed Houari, M.S., Bessaim, A., Bernard, F., Tounsi, A. and Mahmoud, S.R. (2018), "Buckling analysis of new quasi-3D FG nanobeams based on nonlocal strain gradient elasticity theory and variable length scale parameter", Steel Compos. Struct., 28(1), 13-24. https://doi.org/10.12989/scs.2018.28.1.013.
  5. Arefi, M. (2015), "Elastic solution of a curved beam made of functionally graded materials with different cross sections", Steel Compos. Struct., 18(3), 659-672. https://doi.org/10.12989/scs.2015.18.3.659.
  6. Arioui, O., Belakhdar, K., Kaci, A. and Tounsi, A. (2018), "Thermal buckling of FGM beams having parabolic thickness variation and temperature dependent materials", Steel Compos. Struct., 27(6), 777-788. https://doi.org/10.12989/scs.2018.27.6.777.
  7. Bambaeechee, M. (2019), "Free vibration of AFG beams with elastic end restraints", Steel Compos. Struct., 33(3), 403-432. https://doi.org/10.12989/scs.2019.33.3.403.
  8. Bennai, R., Ait Atmane, H. and Tounsi, A. (2015), "A new higher-order shear and normal deformation theory for functionally graded sandwich beams", Steel Compos. Struct., 19(3), 521-546. https://doi.org/10.12989/scs.2015.19.3.521.
  9. Bert, C.W. and Malik, M. (1996), "Differential quadrature method in computational mechanics: a review", Appl. Mech. Reviews, 49(1), 1-28. https://doi.org/10.1115/1.3101882
  10. Doroushi, A., Akbarzadeh, A.H. and Eslami, M.R. (2010), "Dynamic analysis of functionally graded piezoelectric material beam using the hybrid fourier-laplace transform method", Proceedings of the 10th Biennial Conference on Engineering Systems Design and Analysis, ESDA2010.
  11. Ebrahimi, F., Daman, M. and Mahesh, V. (2019), "Thermomechanical vibration analysis of curved imperfect nano-beams based on nonlocal strain gradient theory", Adv. Nano Res., 7(4), 249-263. https://doi.org/10.12989/anr.2019.7.4.249.
  12. Ebrahimi, S., Zahrai, S.M. and Mirghaderi, S.R. (2019), "Numerical study on force transfer mechanism in through gusset plates of SCBFs with HSS columns & beams", Steel Compos. Struct., 31(6), 541-558. https://doi.org/10.12989/scs.2019.31.6.541.
  13. Eltaher, M.A., Emam, S.A. and Mahmoud, F.F. (2013), "Static and stability analysis of nonlocal functionally graded nanobeams", Compos. Struct., 96, 82-88. https://doi.org/10.1016/j.compstruct.2012.09.030
  14. Eringen, A.C. (1972), "Nonlocal polar elastic continua", Int. J. Eng. Sci., 10(1), 1-16. https://doi.org/10.1016/0020-7225(72)90070-5.
  15. Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54(9), 4703-4710. https://doi.org/10.1063/1.332803.
  16. Finot, M. and Suresh, S. (1996), "Small and large deformation of thick and thin-film multilayers: effect of layer geometry, plasticity and compositional gradients", J. Mech. Phys. Solids, 44(5), 683-721. https://doi.org/10.1016/0022-5096(96)84548-0.
  17. Hadji, L., Daouadji, T.H., Tounsi, A. and Bedia, E.A. (2014), "A higher order shear deformation theory for static and free vibration of FGM beam", Steel Compos. Struct., 16(5), 507-519. https://doi.org/10.12989/scs.2014.16.5.507.
  18. Kamil Zur, K. and Jankowski, P. (2019), "Multiparametric analytical solution for the eigenvalue problem of FGM porous circular plates", Symmetry, 11(429), 1-24. https://doi.org/10.3390/sym11030429.
  19. Ke, L.L. and Wang, Y.S. (2012a), "Thermoelectric-mechanical vibration of piezoelectric nanobeams based on the nonlocal theory", Smart Mater. Struct., 21(2), https://doi.org/10.1088/0964-1726/21/2/025018.
  20. Ke, L.L., Wang, Y.S. and Wang, Z.D. (2012b), "Nonlinear vibration of the piezoelectric nanobeams based on the nonlocal theory", Compos. Struct., 94(6), 2038-2047. https://doi.org/10.1016/j.compstruct.2012.01.023.
  21. Lai, B., Richard, J.Y. and Xiong, M. (2019), "Experimental and analytical investigation of composite columns made of high strength steel and high strength concrete", Steel Compos. Struct., 33(1), 67-79. https://doi.org/10.12989/scs.2019.33.1.067.
  22. Li, X., Zhou, X., Liu J. and Wang, X. (2019), "Shear behavior of short square tubed steel reinforced concrete columns with high-strength concrete", Steel Compos. Struct., 32(3), 411-422. https://doi.org/10.12989/scs.2019.32.3.411.
  23. Liu, R., Wang, L. (2015), "Thermal vibration of a single-walled carbon nanotube predicted by semiquantum molecular dynamics", Phys. Chem. Chem. Phys., 7. https://doi.org/10.1039/C4CP05495D.
  24. Marin, M. (2010), "A domain of influence theorem for microstretch elastic materials", Nonlinear Anal. Real World Appl., 11(5), 3446-3452. https://doi.org/10.1016/j.nonrwa.2009.12.005.
  25. Marin, M. and Lupu, M. (1998), "On harmonic vibrations in thermoelasticity of micropolar bodies", J. Vib. Control, 4(5), 507-518. https://doi.org/10.1177/107754639800400501.
  26. Marin, M. and Marinescu, C. (1998), "Thermoelasticity of initially stressed bodies, Asymptotic equipartition of energies", Int. J. Eng. Sci., 36(1), 73-86. https://doi.org/10.1016/S0020-7225(97)00019-0.
  27. Mirjavadi, S.S., Afshari, B.M., Shafiei, N., Hamouda, A.M.S. and Kazemi, M. (2017), "Thermal vibration of two-dimensional functionally graded (2D-FG) porous Timoshenko nanobeams", Steel Compos. Struct., 25(4), 415-426. https://doi.org/10.12989/scs.2017.25.4.415.
  28. Nguyen, D.K. and Tran, T.T. (2018), "Free vibration of tapered BFGM beams using an efficient shear deformable finite element model", Steel Compos. Struct., 29(3), 363-377. https://doi.org/10.12989/scs.2018.29.3.363.
  29. Nguyen, X.H., Le, D.D. and Nguyen, Q.H. (2019), "Static behavior of novel RCS through-column-type joint: Experimental and numerical study", Steel Compos. Struct., 32(1), 111-126. https://doi.org/10.12989/scs.2019.32.1.111.
  30. Park, W.T., Han, S.C., Jung, W.Y. and Lee, W.H. (2016), "Dynamic instability analysis for S-FGM plates embedded in Pasternak elastic medium using the modified couple stress theory", Steel Compos. Struct., 22(6), 1239-1259. https://doi.org/10.12989/scs.2016.22.6.1239.
  31. Rumeng, L. and Wang, Lifeng (2016), "Thermal vibration of a double-layered graphene sheet with initial stress at low temperature", Chinese Sci. Bull., 62(4), 245-253. https://doi.org/10.1360/N972016-00927.
  32. Shafiei, H. and Setoodeh, A.R. (2017), "Nonlinear free vibration and post-buckling of FG-CNTRC beams on nonlinear foundation", Steel Compos. Struct., 24(1), 65-77. https://doi.org/10.12989/scs.2017.24.1.065.
  33. Sharma, P. (2018) "Efficacy of Harmonic Differential Quadrature method to vibration analysis of FGPM beam", Compos. Struct., 189, 107-116. https://doi.org/10.1016/j.compstruct.2018.01.059.
  34. Shu, C. and Wang, C. (1999), "Treatment of mixed and nonuniform boundary conditions in GDQ vibration analysis of rectangular plates", Eng. Struct., 21(2), 125-134. https://doi.org/10.1016/S0141-0296(97)00155-7
  35. Song, Y., Uy, B. and Wang, J. (2019), "Numerical analysis of stainless steel-concrete composite beam-to-column joints with bolted flush endplates", Steel Compos. Struct., 33(1), 143-162. https://doi.org/10.12989/scs.2019.33.1.143.
  36. Tahouneh, V., Naei, M.H. and Mosavi Mashhadi, M. (2019), "Using IGA and trimming approaches for vibrational analysis of L-shape graphene sheets via nonlocal elasticity theory", Steel Compos. Struct., 33(5), 717-727. https://doi.org/10.12989/scs.2019.33.5.717.
  37. Tahouneh, V., Naei, M.H. and Mosavi Mashhadi, M. (2020), "Influence of vacancy defects on vibration analysis of graphene sheets applying isogeometric method: Molecular and continuum approaches", Steel Compos. Struct., 34(2), 261-277. https://doi.org/10.12989/scs.2020.34.2.261.
  38. Tornabene, F., Bacciocchi, M., Fantuzzi, N. and Reddy, J.N. (2018), "Multiscale Approach for Three-Phase CNT/Polymer/Fiber Laminated Nanocomposite Structures", Polymer Composites, In Press, https://doi.org/10.1002/pc.24520.
  39. Tornabene, F., Fantuzzi, N. and Bacciocchi, M. (2017), "Foam core composite sandwich plates and shells with variable stiffness: Effect of the curvilinear fiber path on the modal response", J. Sandw. Struct. Mater., 21(1), 320-365. https://doi.org/10.1177/1099636217693623.
  40. Tornabene, F., Fantuzzi, N. and Bacciocchi, M. (2019), "Refined shear deformation theories for laminated composite arches and beams with variable thickness: Natural frequency analysis", Eng. Anal. Bound. Elem., 100, 24-47. https://doi.org/10.1016/j.enganabound.2017.07.029.
  41. Tornabene, F., Fantuzzi, N., Bacciocchi, M. and Viola, E. (2016), "Effect of agglomeration on the natural frequencies of functionally graded carbon nanotube-reinforced laminated composite doubly-curved shells", Compos. Part B: Eng., 89, 187-218. https://doi.org/10.1016/j.compositesb.2015.11.016.
  42. Tornabene, F., Fantuzzi, N., Ubertini, F. and Viola, E. (2015), "Strong Formulation Finite Element Method Based on Differential Quadrature: A Survey", Appl. Mech. Rev., 67(2), 1-55. https://doi.org/10.1115/1.4028859.
  43. Wang, J. and Sun, Q. (2019), "Seismic behavior of Q690 circular HCFTST columns under constant axial loading and reversed cyclic lateral loading", Steel Compos. Struct., 32(2), 199-212. https://doi.org/10.12989/scs.2019.32.2.199.
  44. Wang, L. and Hu, H. (2014a), "Thermal vibration of single-walled carbon nanotubes with quantum effects", Proc. R. Soc. A., 470. http://dx.doi.org/10.1098/rspa.2014.0087.
  45. Wang, L. and Hu, H. (2014b), "Thermal vibration of a rectangular single-layered graphene sheet with quantum effects", J. Appl. Phys., 115(23), https://doi.org/10.1063/1.4885015.
  46. Wang, L. and Hu, H. (2015), "Thermal vibration of a circular single-layered graphene sheet with simply supported or clamped boundary", J. Sound Vib., 349, 206-215. https://doi.org/10.1016/j.jsv.2015.03.045.
  47. Wang, Q. (2002), "On buckling of column structures with a pair of piezoelectric layers", Eng. Struct., 24, 199-205. https://doi.org/10.1016/S0141-0296(01)00088-8
  48. Wang, X., Zhou, W. and Zhang, X. (2019), "Integrated design of laminated composite structures with piezocomposite actuators for active shape control", Compos. Struct., 215, 166-177. https://doi.org/10.1016/j.compstruct.2019.02.056.
  49. Wattanasakulpong, N. and Chaikittiratana, A. (2015), "Flexural vibration of imperfect functionally graded beams based on Timoshenko beam theory: Chebyshev collocation method", Meccanica, 50, 1331-1342. https://doi.org/10.1007/s11012-014-0094-8
  50. Wu, C.P. and Liu, Y.C. (2016), "A state space meshless method for the 3D analysis of FGM axisymmetric circular plates", Steel Compos. Struct., 22(1), 161-182. https://doi.org/10.12989/scs.2016.22.1.161.
  51. Yaghoobi, H., Valipour, M.S., Fereidoon, A. and Khoshnevisrad, P. (2014), "Analytical study on post-buckling and nonlinear free vibration analysis of FG beams resting on nonlinear elastic foundation under thermo-mechanical loadings using VIM", Steel Compos. Struct., 17(5), 753-776. https://doi.org/10.12989/scs.2014.17.5.753.
  52. Yang, J. and Xiang, H.J. (2007), "Thermo-electro-mechanical characteristics of functionally graded piezoelectric actuators", Smart Mater. Struct., 16(3), 784-797. https://doi.org/10.1088/0964-1726/16/3/028
  53. Zhang, Y., Wang, L. (2018), "Thermally stimulated nonlinear vibration of rectangular single-layered black.