DOI QR코드

DOI QR Code

Effects of calcium and magnesium-balanced deep sea water on antioxidation in kidney cells

칼슘과 마그네슘이 조절된 해양심층수가 신장세포에서 항산화에 미치는 영향

  • Jo, So Min (Department of Food Science and Technology, Seoul National University of Science and Technology) ;
  • Nam, Jain (Department of Food Science and Technology, Seoul National University of Science and Technology) ;
  • Park, Geonhee (Sempio Fermentation Research Center) ;
  • Kim, Byeong Goo (Sempio Fermentation Research Center) ;
  • Jeong, Gwi-Hwa (Sempio Fermentation Research Center) ;
  • Hurh, Byung Serk (Sempio Fermentation Research Center) ;
  • Kim, Ji Yeon (Department of Food Science and Technology, Seoul National University of Science and Technology)
  • Received : 2021.05.04
  • Accepted : 2021.05.31
  • Published : 2021.06.30

Abstract

In this study, the antioxidant effects of mineral-containing deep sea water (DSW) on kidney function was confirmed using a cell model. DSW samples were prepared with different mineral concentrations including calcium and magnesium-the main minerals found in DSW-to derive the following sample groups: trace minerals (TM), high magnesium (HM), high magnesium, low salt (HMLS) and high magnesium, high calcium (HMHC). The purpose of this preparation was to determine the optimal calcium/magnesium ratio in DSW. Human embryonic kidney (HEK293) cells were exposed to sodium chloride (NaCl) for 2 h to induce release of reactive oxygen species (ROS). Thereafter, the cells were treated with the respective DSW samples before ROS concentrations, as well as antioxidant enzyme activity and protein levels, were measured. Among the water samples, HMLS showed the most protective effect against ROS, whereas the intracellular glutathione content was highest in cells from the HMLS- and HMHC-treated groups. However, TM- and HMHC-treated cells showed similar tendencies to the control group, in terms of mRNA expression of antioxidant genes. These results suggested that DSW may aid in preventing renal oxidative stress caused by excessive sodium intake. Furthermore, it was determined that HMLS and HMHC water samples displayed good antioxidant effects in the kidney cell model, based on the combined results of ROS concentration and antioxidant marker measurements.

본 연구에서는 미네랄이 함유된 해양심층수(DSW)가 신장 기능에 미치는 항산화 효과를 세포 모델을 사용하여 확인하였다. DSW 샘플은 최적의 칼슘/마그네슘 비율을 결정하기 위한 목적으로, 각기 다른 칼슘 및 마그네슘 비율을 가진 4가지 샘플-미량 미네랄(TM), 고 마그네슘(HM), 고 마그네슘 저염(HMLS) 및 고 마그네슘 고 칼슘(HMHC)-로 준비되었다. 신장 세포주 HEK293를 2시간 동안 NaCl로 처리하여 ROS를 유도한 후, 마그네슘과 칼슘 등의 미네랄이 서로 다른 비율로 용해된 물로 처리하여 ROS 농도와 항산화 효소 활성 및 단백질을 측정하였다. 물 샘플 중 HMLS는 ROS에 대한 세포에 가장 많은 보호효과를 나타냈다. 세포 내 글루타티온 함량은 HMLS 그룹과 HMHC 그룹에서 가장 높았다. 반면, TM과 HMHC는 항산화 유전자의 mRNA 발현에서 대조군과 유사한 경향을 보였다. 이러한 결과는 DSW가 과도한 나트륨 섭취로 인한 신장의 산화 스트레스를 예방하는 데 도움이 될 수 있음을 시사한다. 또한 ROS 농도와 항산화 마커 측정 결과를 종합하여 볼 때 HMLS와 HMHC가 신장 세포 모델에서 우수한 항산화 효과를 가진 DSW 샘플이라고 판단할 수 있다.

Keywords

Acknowledgement

이 연구는 한국 정부(MEST) 가 지원하는 한국연구재단(NRF) 보조금(No. 2017R1E1A1A01074320)에 의해 지원되었습니다.

References

  1. Suckling RJ, Swift PA (2015) The health impacts of dietary sodium and a low-salt diet. Clin Med 15: 585-588. doi: 10.7861/clinmedicine.15-6-585
  2. Cappuccio FP (2007) Salt and cardiovascular disease. British Medical Journal Publishing Group, BMJ. 2007 Apr 28; 334(7599): 859-860. doi: 10.1136/bmj.39175.364954.BE
  3. Kitiyakara C, Chabrashvili T, Chen Y, Blau J, Karber A, Aslam S, Welch WJ, Wilcox CS (2003) Salt intake, oxidative stress, and renal expression of NADPH oxidase and superoxide dismutase. J Am Soc Nephrol 14: 2775-2782. doi: 10.1097/01.asn.0000092145.90389.65
  4. Zhang Z, Dmitrieva NI, Park J-H, Levine RL, Burg MB (2004) High urea and NaCl carbonylate proteins in renal cells in culture and in vivo, and high urea causes 8-oxoguanine lesions in their DNA. Proc Natl Acad Sci 101: 9491-9496. doi: 10.1073/pnas.0402961101
  5. Nani M, Zura S, Majid F, Jaafar A, Mahdzir A, Musa M (2016) Potential health benefits of deep sea water: a review. Evid Based Complement Alternat Med 2016: 6520475. doi: 10.1155/2016/6520475
  6. McDowell LR, Wilkinson N, Madison R, Felix TL (2007) Vitamins and minerals functioning as antioxidants with supplementation considerations. In: Florida Ruminant Nutrition Symposium; Best Western Gateway Grand: Gainesville, FL, USA, 2007. Citeseer, pp 30-31
  7. Solda NM, Glombowsky P, Campigotto G, Bottari NB, Schetinger MRC, Morsch VM, Favero JF, Baldissera MD, Schogor ALB, Barreta D, Machado G, Silva AS (2017) Injectable mineral supplementation to transition period dairy cows and its effects on animal health. Comp Clin Pathol26: 335-342. doi: 10.1007/s00580-016-2378-y
  8. Fan H, Tan Z, Hua Y, Huang X, Gao Y, Wu Y, Liu B, Zhou Y (2016) Deep sea water improves exercise and inhibits oxidative stress in a physical fatigue mouse model. Biomedical reports 4: 751-757. doi: 10.3892/br.2016.651
  9. Rosanoff A, Weaver CM, Rude RK (2012) Suboptimal magnesium status in the United States: are the health consequences underestimated? Nutr Rev 70: 153-164. doi: 10.1111/j.1753-4887.2011.00465.x
  10. Dai Q, Shu X-O, Deng X, Xiang Y-B, Li H, Yang G, Shrubsole MJ, Ji B, Cai H, Chow W-H, Gao Y-T, Zheng W (2013) Modifying effect of calcium/magnesium intake ratio and mortality: a population-based cohort study. BMJ open 3. doi: 10.1136/bmjopen-2012-002111
  11. Hyun YJ, Kim JG, Kim MJ, Jung SK, Kim JY (2021) Mineral-rich Jeju lava sea water suppresses lipid accumulation in 3T3-L1 adipocytes and ameliorates high-fat diet-induced obesity in C57BL/6 J mice. Food Sci Biotechnol 30: 299-304. doi: 10.1007/s10068-020-00859-8
  12. Zhou X, Ferraris JD, Burg MB (2006) Mitochondrial reactive oxygen species contribute to high NaCl-induced activation of the transcription factor TonEBP/OREBP. Am J Physiol Renal Physiol 290: F1169-F1176. doi: 10.1152/ajprenal.00378.2005
  13. Zhou X, Ferraris JD, Cai Q, Agarwal A, Burg MB (2005) Increased reactive oxygen species contribute to high NaCl-induced activation of the osmoregulatory transcription factor TonEBP/OREBP. Am J Physiol Renal Physiol 289: F377-F385. doi: 10.1152/ajprenal.00463.2004
  14. Fellner RC, Cook AK, O'Connor PM, Zhang S, Pollock DM, Inscho EW (2014) High-salt diet blunts renal autoregulation by a reactive oxygen species-dependent mechanism. Am J Physiol Renal Physiol 307: F33-F40. doi: 10.1152/ajprenal.00040.2014
  15. Briet M, Schiffrin EL (2010) Aldosterone: effects on the kidney and cardiovascular system. Nat Rev Nephrol 6: 261-273. doi: 10.1038/nrneph.2010.30
  16. Chen S, Meng X-F, Zhang C (2013) Role of NADPH oxidase-mediated reactive oxygen species in podocyte injury. BioMed Res. Int. 2013: 839761. doi: 10.1155/2013/839761
  17. Bian Y-Y, Guo J, Majeed H, Zhu K-X, Guo X-N, Peng W, Zhou H-M (2015) Ferulic acid renders protection to HEK293 cells against oxidative damage and apoptosis induced by hydrogen peroxide. In Vitro Cell Dev Biol Anim 51: 722-729 https://doi.org/10.1007/s11626-015-9876-0
  18. Hayes JD, McLELLAN LI (1999) Glutathione and glutathione-dependent enzymes represent a co-ordinately regulated defence against oxidative stress. Free Radic Res 31: 273-300. doi: 10.1080/10715769900300851
  19. Galano A, Alvarez-Idaboy JR (2011) Glutathione: mechanism and kinetics of its non-enzymatic defense action against free radicals. Rsc Advances 1: 1763-1771 https://doi.org/10.1039/c1ra00474c
  20. Meister A (1983) Selective modification of glutathione metabolism. Science 220: 472-477. doi: 10.1126/science.6836290
  21. Djukic-Cosic D, Ninkovic M, Malicevic Z, Matovic V, Soldatovic D (2007) Effect of magnesium pretreatment on reduced glutathione levels in tissues of mice exposed to acute and subacute cadmium intoxication: a time course study. Magnes Res 20: 177-186
  22. Hsu JM, Rubenstein B, Paleker A (1982) Role of magnesium in glutathione metabolism of rat erythrocytes. J Nutr 112: 488-496. doi: 10.1093/jn/112.3.488
  23. Hao M, Liu R (2019) Molecular mechanism of CAT and SOD activity change under MPA-CdTe quantum dots induced oxidative stress in the mouse primary hepatocytes. Spectrochim Acta A Mol Biomol Spectrosc 220: 117104. doi: 10.1016/j.saa.2019.05.009
  24. Behairy RT, El-Danasoury M, Craker L (2012) Impact of ascorbic acid on seed germination, seedling growth, and enzyme activity of salt-stressed fenugreek. Journal of Medicinally Active Plants 1: 106-113. doi: 10.7275/R5TT4NW9
  25. Zhang Y, Davies LR, Martin SM, Bawaney IM, Buettner GR, Kerber RE (2003) Magnesium reduces free radical concentration and preserves left ventricular function after direct current shocks. Resuscitation 56: 199-206. doi: 10.1016/s0300-9572(02)00353-2
  26. Hans CP, Chaudhary DP, Bansal DD (2003) Effect of magnesium supplementation on oxidative stress in alloxanic diabetic rats. Magnesium research 16: 13-19
  27. Anjos JS, Cardozo LFMF, Esgalhado M, Lindholm B, Stenvinkel P, Fouque D, Mafra D (2018) Could low-protein diet modulate Nrf2 pathway in chronic kidney disease? J Ren Nutr 28: 229-234. doi: 10.1053/j.jrn.2017.11.005
  28. Aminzadeh MA, Nicholas SB, Norris KC, Vaziri ND (2013) Role of impaired Nrf2 activation in the pathogenesis of oxidative stress and inflammation in chronic tubulo-interstitial nephropathy. Nephrol Dial Transplant 28: 2038-2045. doi: 10.1093/ndt/gft022
  29. Kansanen E, Kuosmanen SM, Leinonen H, Levonen A-L (2013) The Keap1-Nrf2 pathway: Mechanisms of activation and dysregulation in cancer. Redox Biol 1: 45-49. doi: 10.1016/j.redox.2012.10.001
  30. Rodriguez C, Mayo JC, Sainz RM, Antolin I, Herrera F, Martin V, Reiter RJ (2004) Regulation of antioxidant enzymes: a significant role for melatonin. J pineal Res 36: 1-9. doi: 10.1046/j.1600-079X.2003.00092.x

Cited by

  1. Effect of Mineral-Balanced Deep-Sea Water on Kidney Function and Renal Oxidative Stress Markers in Rats Fed a High-Salt Diet vol.22, pp.24, 2021, https://doi.org/10.3390/ijms222413415