DOI QR코드

DOI QR Code

Ni Nanoparticle-Graphene Oxide Composites for Speedy and Efficient Removal of Cr(VI) from Wastewater

  • Wang, Wan-Xia (Key Laboratory of and Functional Molecule Design and Interface Process, Anhui Jianzhu University) ;
  • Zhao, Dong-Lin (Key Laboratory of and Functional Molecule Design and Interface Process, Anhui Jianzhu University) ;
  • Wu, Chang-Nian (Key Laboratory of and Functional Molecule Design and Interface Process, Anhui Jianzhu University) ;
  • Chen, Yan (Key Laboratory of and Functional Molecule Design and Interface Process, Anhui Jianzhu University) ;
  • Oh, Won-Chun (Department of Advanced Materials Science & Engineering, Hanseo University)
  • Received : 2021.05.08
  • Accepted : 2021.06.01
  • Published : 2021.06.27

Abstract

In this study, Ni nanoparticle supported by graphene oxide (GO) (Ni-GO) is successfully synthesized through hydrothermal synthesis and calcination, and Cr(VI) is extracted from aqueous solution. The morphology and structure of Ni-GO composites are characterized by scanning electron microscopy (SEM), trans mission electron microscopy (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). High-resolution transmission electron microscopy (HRTEM) and XRD confirms the high dispersion of Ni nanoparticle after support by GO. Loading Ni on GO can obviously enhance the stability of Ni-GO composites. It can be calculated from TGA that the mass percentage of Ni is about 60.67 %. The effects of initial pH and reaction time on Cr(VI) removal ability of Ni-GO are investigated. The results indicate that the removal efficiency of Cr(VI) is greater than that of bared GO. Ni-GO shows fast removal capacity for Cr(VI) (<25 min) with high removal efficiency. Dynamic experiments show that the removal process conforms to the quasi-second order model of adsorption, which indicates that the rate control step of the removal process is chemical adsorption. The removal capacity increases with the increase of temperature, indicating that the reaction of Cr(VI) on Ni-GO composites is endothermic and spontaneous. Combined with tests and characterization, the mechanism of Cr(VI) removal by rapidly adsorption on the surface of Ni-GO and reduction by Ni nanoparticle is investigated. The above results show that Ni-GO can be used as a potential remediation agent for Cr(VI)-contaminated groundwater.

Keywords

Acknowledgement

Financial support from the National Natural Science Foundation of China (21876001) is acknowledged.

References

  1. J. Li, X. X. Wang, G. X. Zhao, C. L. Chen, Z. F. Chai, A. Alsaedi, T. Hayat and X. K. Wang, Chem. Soc. Rev., 47, 2322 (2018). https://doi.org/10.1039/C7CS00543A
  2. L. L. Fan, C. N. Luo, M. Sun and H. M. Qiu, J. Mater. Chem., 47, 24577 (2012).
  3. Y. Q. Wang, B. F. Zou, T. Gao, X. P. Wu, S. Y. Lou and S. M. Zhou, J. Mater. Chem., 22, 9034 (2012). https://doi.org/10.1039/c2jm30440f
  4. L. Y. Hu, L. X. Chen, M. T. Liu, A. J. Wang, L. J. Wu and J. J. Feng, J. Colloid Interface Sci., 493, 94 (2017). https://doi.org/10.1016/j.jcis.2016.12.068
  5. S. Rapti, D. Sarma, S. A. Diamantis, E. Skliri, G. S. Armatas, A. C. Tsipis, Y. S. Hassan, M. Alkordi, C. D. Malliakas, M. G. Kanatzidis, T. Lazarides, J. C. Plakatouras and M. J. Manos, J. Mater. Chem. A, 5, 14707 (2017). https://doi.org/10.1039/C7TA04496H
  6. A. H. Smith and C. M. Steinmaus, Annu. Rev. Public Health, 30, 107 (2009). https://doi.org/10.1146/annurev.publhealth.031308.100143
  7. F. Qin, R. Wang, G. Li, F. Tian, H. Zhao and R. Chen, Catal. Commun., 42, 14 (2013). https://doi.org/10.1016/j.catcom.2013.07.039
  8. J. B. Vincent, Acc. Chem. Res., 33, 503 (2000). https://doi.org/10.1021/ar990073r
  9. D. Dinda, A. Gupta and S. K. Saha, J. Mater. Chem. A, 1, 11221 (2013). https://doi.org/10.1039/c3ta12504a
  10. L. Liu, J. Xue, X. Shan, G. He, X. Wang and H. Chen, Catal. Commun., 75, 13 (2016). https://doi.org/10.1016/j.catcom.2015.11.015
  11. M. Yadav and Q. Xu, Chem. Commun., 49, 3327 (2013). https://doi.org/10.1039/c3cc00293d
  12. A. K. Geim and K. S. Novoselov, Nat. Mater., 6, 183 (2007). https://doi.org/10.1038/nmat1849
  13. C. T. Chien, S. S. Li, W. J. Lai, Y. C. Yeh, H. A. Chen, I. S. Chen, L. C. Chen, K. H. Chen, T. Nemoto, S. Isoda, M. Chen, T. Fujita, G. Eda, H. Yamaguchi, M. Chhowalla and C. W. Chen, Angew. Chem. Int. Ed., 51, 6662 (2012). https://doi.org/10.1002/anie.201200474
  14. Z. W. Huang, Z. J. Li, L. R. Zheng, W. S. Wu, Z. F. Chai and W. Q. Shi, Environ. Pollut., 248, 82 (2019). https://doi.org/10.1016/j.envpol.2019.01.050
  15. Q. P. Kong, J. Y. Wei, Y. Hu and C. H. Wei, J. Hazard. Mater., 363, 161 (2019). https://doi.org/10.1016/j.jhazmat.2018.09.084
  16. W. T. Zhu, C. J. Wu, Y. X. Chang, H. C. Cheng and C. B. Yuk, Mater. Lett., 237, 1 (2019). https://doi.org/10.1016/j.matlet.2018.09.174
  17. J. M. Englert, C. Dotzer, G. Yang, M. Schmid, C. Papp, J. M. Gottfried, H. P. Steinruck, E. Spiecker, F. Hauke and A. Hirsch, Nat. Chem., 3, 279 (2011). https://doi.org/10.1038/nchem.1010
  18. Y. A. Li, Y. J. Chen and N. H. Tai, Langmuir, 29, 8433 (2013). https://doi.org/10.1021/la401662d
  19. B. Zeynizadeh and S. Karami, Polyhedron, 166, 196 (2019). https://doi.org/10.1016/j.poly.2019.03.056
  20. Z. S. Wu, W. Ren, L. Wen, L. Gao, J. Zhao, Z. Chen, G. Zhou, F. Li and H. M. Cheng, ACS Nano, 4, 3187 (2010). https://doi.org/10.1021/nn100740x
  21. B. T. Dong, X. Zhang, X. Xu, G. X. Gao, S. J. Ding, J. Li and B. B. Li, Carbon, 80, 222 (2014). https://doi.org/10.1016/j.carbon.2014.08.060
  22. H. Bi, H. L. Cui, T. Q. Lin and F. Q. Huang, Carbon, 91, 153 (2015). https://doi.org/10.1016/j.carbon.2015.04.051
  23. L. L. Chen, S. J. Feng, D. L. Zhao, S. H. Chen, F. F. Li and C. L. Chen, J. Colloid Interface Sci., 490, 197 (2017). https://doi.org/10.1016/j.jcis.2016.11.050
  24. J. Balamurugan, T. D. Thanh, S. B. Heo, N. H. Kim and J. H. Lee, Carbon, 94, 962 (2015). https://doi.org/10.1016/j.carbon.2015.07.087
  25. K. N. Kudin, B. Ozbas, H. C. Schniepp, R. K. Prudhomme, I. A. Aksay and R. Car, Nano Lett., 8, 36 (2008). https://doi.org/10.1021/nl071822y
  26. J. Chen, K. X. Sheng, P. H. Luo, C. Li and G. Q. Shi, Adv. Mater., 24, 4569 (2012). https://doi.org/10.1002/adma.201201978
  27. T. Ahmed, S. N. Xiu, L. J. Wang and A. Shahbazi, Fuel, 211, 566 (2018). https://doi.org/10.1016/j.fuel.2017.09.051
  28. D. L. Zhao, X. Gao, S. H. Chen, F. Z. Xie, S. J. Feng, A. Alsaedi, T. Hayat and C. L. Chen, J. Colloid Interface Sci., 524, 129 (2018). https://doi.org/10.1016/j.jcis.2018.04.012
  29. Y. Zhao, D. L. Zhao, C. L. Chen and X. K. Wang, J. Colloid Interface Sci., 405, 211 (2013). https://doi.org/10.1016/j.jcis.2013.05.004
  30. Z. Qu, L. Q. Kou, T. C. Wang, D. L. Ang and S. B. Hu, J. Environ. Manage., 201, 378 (2017). https://doi.org/10.1016/j.jenvman.2017.07.010
  31. C. H. Wu, J. Hazard. Mater., 144, 93 (2007). https://doi.org/10.1016/j.jhazmat.2006.09.083
  32. J. Li, C. L. Chen, Y. Zhao, J. Hu, D. D. Shao and X. K. Wang, Chem. Eng. J., 229, 296 (2013). https://doi.org/10.1016/j.cej.2013.06.016
  33. D. L. Zhao, L. L. Chen, M. W. C. Xu, S. J. Feng, Y. Ding, M. Wakeel, N. S. Alharbi and C. L. Chen, ACS Sustainable Chem. Eng., 5, 10290 (2017). https://doi.org/10.1021/acssuschemeng.7b02316
  34. B. Koushik, M. Arnab, K. M. Manish and D. Goutam, Langmuir, 30, 3209 (2014). https://doi.org/10.1021/la500156e
  35. M. V. Dinu and E. S. Dragan, Chem. Eng. J., 160, 157 (2010). https://doi.org/10.1016/j.cej.2010.03.029
  36. Z. Y. Zhang, P. P. Xu, Y. Weng, Y. Y. Zhou and S. S. Xiong, J. Alloys Compd., 847, 156366 (2020). https://doi.org/10.1016/j.jallcom.2020.156366
  37. Q. Zhang, D. L. Zhao, Y. Ding, Y. Chen, F. F. Li, A. Alsaedi, T. Hayat and C. L. Chen, J. Clean. Prod., 230, 1305 (2019). https://doi.org/10.1016/j.jclepro.2019.05.193
  38. Z. Q. Fang, X. H. Qiu, J. H. Chen and X. Q. Qiu, J. Hazard. Mater., 185, 958 (2011). https://doi.org/10.1016/j.jhazmat.2010.09.113
  39. Y. Zhang, M. Yang, X. M. Dou, H. He and D. S. Wang, Environ. Sci. Technol., 39, 7246 (2005). https://doi.org/10.1021/es050775d
  40. Y. H. Cao, J. N. Huang, Y. H. Li, S. Qiu, J. R. Liu, A. Khasanov, M. A. Khan, D. P. Young, F. Peng, D. P. Cao, X. F. Peng, K. L. Hong and Z. H. Guo, Carbon, 109, 640 (2016). https://doi.org/10.1016/j.carbon.2016.08.035