DOI QR코드

DOI QR Code

Effects of Growth Ambient, Process Pressure, and Heat Treatments on the Properties of RF Magnetron Sputtered GaMgZnO UV-Range Transparent Conductive Films

  • Patil, Vijay (Photonic and Electronic Thin Film Laboratory, Department of Materials Science and Engineering, Chonnam National University) ;
  • Lee, Chesin (Photonic and Electronic Thin Film Laboratory, Department of Materials Science and Engineering, Chonnam National University) ;
  • Lee, Byung-Teak (Photonic and Electronic Thin Film Laboratory, Department of Materials Science and Engineering, Chonnam National University)
  • Received : 2021.03.31
  • Accepted : 2021.05.13
  • Published : 2021.06.27

Abstract

Effects of growth variables and post-growth annealing on the optical, structural and electrical properties of magnetron-sputtered Ga0.04Mg0.10Zn0.86O films are characterized in detail. It is observed that films grown from pure oxygen plasma showed high resistivity, ~102 Ω·cm, whereas films grown in Ar plasma showed much lower resistivity, 2.0 × 10-2 ~ 1.0 × 10-1 Ω·cm. Post-growth annealing significantly improved the electrical resistivity, to 4.3 ~ 9.0 × 10-3 Ω·cm for the vacuum annealed samples and to 1.3 ~ 3.0 × 10-3 Ω·cm for the films annealed in Zn vapor. It is proposed that these phenomena may be attributed to the improved crystalline quality and to changes in the defect chemistry. It is suggested that growth within oxygen environments leads to suppression of oxygen vacancy (Vo) donors and formation of Zn vacancy (VZn) acceptors, resulting in highly resistive films. After annealing treatment, the activation of Ga donors is enhanced, Vo donors are annihilated, and crystalline quality is improved, increasing the electron mobility and the concentration. After annealing in Zn vapor, Zn interstitial donors are introduced, further increasing the electron concentration.

Keywords

Acknowledgement

This study was financially supported by Chonnam National University (Grant number: 2019-3902).

References

  1. X. Du, Z. Mei, Z. Liu, Y. Guo, T. Zhang, Y. Hou, Z. Zhang, Q. Xue and A.Y. Kuznetsov, Adv. Mater., 4625, 21 (2009).
  2. J. D. Hwang, S. Y. Wang and S. B. Hwang, J. Alloys Compd., 618, 656 (2016).
  3. C. Zhou, Q. Ai, X. Chen, X. Gao, K. Liu and D. Shen, Chin. Phys. B, 048503, 28 (2019).
  4. A. Wierzbicka, M. A. Pietrzyk, A. Reszka, J. Dyczewski, J. M. Sajkowski and A. Kozanecki, Appl. Surf. Sci., 28, 404 (2017).
  5. A. Ohtomo, M. Kawasaki, T. Koida, K. Masubuchi, H. Koinuma, Y. Sakurai, Y. Yoshida, T. Yasuda and Y. Segawa, Appl. Phys. Lett., 2466, 72 (1998).
  6. C. Yang, X. M. Li, X. D. Gao, X. Cao, R. Yang and Y. Z. Li, Solid State Commun., 264, 151 (2011).
  7. S.-H. Jeong, J.-H. Park and B.-T. Lee, J. Alloys and Compd., 52, 617 (2014).
  8. X. Q. Wei, J. Z. Huang, M. Y. Zhang, Y. Du and B. Y. Man, Mater. Sci. Eng. B, 141, 166 (2010).
  9. J.-H. Park, N.-S. Yoon and B.-T. Lee, J. Cryst. Growth, 160, 381 (2013).
  10. C. Lee, C.-H. Jeon, S.-H. Jeong, and B.-T. Lee, J. Alloys and Compd., 977, 742 (2018).
  11. C. Lee, S.-H. Jeong, and B.-T. Lee, J. Alloys and Compd., 152892, 818 (2020).
  12. H. B. Cuong, C.-S. Lee, S.-H. Jeong and B.-T. Lee, Acta Mater., 47, 130 (2017).
  13. A. M. Gsiea, J. P. Goss, P. R. Briddon, R. M. Al-habashi, K. M. Etmimi and K. A. S. Marghani, Int. J. Math. Comput. Phys. Quantum Eng., 127, 8 (2014).
  14. S. Lany and A. Zunger, Phys. Rev. Lett., 045501, 98 (2007).
  15. J. Tauc, R. Grigorovici and A. Vancu, Phys. Status Solidi B, 627, 15 (1966).
  16. S. Liang, M. Zeng-Xia and Du Xiao-Long, Chin. Phys. B, 067306-1, 21 (2012).