DOI QR코드

DOI QR Code

비대면 운동 콘텐츠를 위한 움직임 추적 모델

A Movement Tracking Model for Non-Face-to-Face Excercise Contents

  • 정다니엘 (숭실대학교 정보통신소재융합학과) ;
  • 조민구 (숭실대학교 글로벌미디어학부) ;
  • 고일주 (숭실대학교 글로벌미디어학부)
  • 투고 : 2021.03.17
  • 심사 : 2021.04.11
  • 발행 : 2021.06.30

초록

여러 명이 모여서 진행되는 스포츠 활동은 코로나19와 같이 광범위하게 유행하는 전염병이 퍼지는 상황에서는 진행되기 어려우며, 이로 인해 현대인의 신체 활동 부족이 발생한다. 비대면으로 진행되는 운동 콘텐츠들을 이용하면 이런 문제점을 극복할 수 있지만, 대면 운동 시와 같은 세밀한 자세 확인이 어렵다. 본 연구에서는 보다 나은 비대면 운동 콘텐츠 운영을 위해서 IT 시스템에서 자세를 감지하고 움직임을 추적하는 모델을 제시한다. 제안하는 움직임 추적 모델은 체육학에서 널리 사용되는 움직임 분석 방법들을 참고하여 신체 모델을 정의하고 이에 따른 자세 및 움직임을 정의한다. 제안한 모델을 사용하면 운동에 쓰이는 움직임을 인식하고 분석할 수 있으며 운동 프로그램에서 특정 움직임의 횟수를 알 수 있고, 운동프로그램 수행 여부 감지도 가능하다. 제안한 모델의 유효성을 확인하기 위해 마커리스 모션 캡쳐 장비인 Azure Kinect DK를 사용하여 움직임 추적, 그리고 운동 프로그램 추적 프로그램을 구현하였다. 제안된 움직임 분석 모델을 개선하고 모션 캡쳐 시스템의 성능을 높인다면 보다 세밀한 움직임 분석이 가능하며, 적용할 수 있는 운동의 종류를 늘릴 수 있다.

Sports activities conducted by multiple people are difficult to proceed in a situation where a widespread epidemic such as COVID-19 is spreading, and this causes a lack of physical activity in modern people. This problem can be overcome by using online exercise contents, but it is difficult to check detailed postures such as during face-to-face exercise. In this study, we present a model that detects posture and tracks movement using IT system for better non-face-to-face exercise content management. The proposed motion tracking model defines a body model with reference to motion analysis methods widely used in physical education and defines posture and movement accordingly. Using the proposed model, it is possible to recognize and analyze movements used in exercise, know the number of specific movements in the exercise program, and detect whether or not the exercise program is performed. In order to verify the validity of the proposed model, we implemented motion tracking and exercise program tracking programs using Azure Kinect DK, a markerless motion capture device. If the proposed motion tracking model is improved and the performance of the motion capture system is improved, more detailed motion analysis is possible and the number of types of motions can be increased.

키워드

과제정보

본 연구는 과학기술정보통신부 및 정보통신기획평가원의 SW중심대학사업의 연구결과로 수행되었음(2018-0-00209).

참고문헌

  1. Duck Hee Seo, Kyung Shin Park, and Dong Keun Kim, "Design and Development of Virtual Reality Exergame using Smart mat and Camera Sensor," Journal of the Korea Institute of Information and Communication Engineering, Vol.20, No.12, pp.2297-2304, 2016. https://doi.org/10.6109/jkiice.2016.20.12.2297
  2. Myung Hun Chae and In Bum Jung, "Analysis System for Dumbbell Curl Exercise based on Wireless Sensor Networks," Journal of Korean Institute of Information Scientists and Engineers (KIISE): Computing Practices and Letters, Vol.18, No.1, pp.19-30, 2012.
  3. Knock Hwan Choi and Yun Chan Chung, "Development of a Fitness Device for Self-training," Proceedings of HCI Korea 2018, pp.193-196, 2018.
  4. Yeonghyeon Byeon, Myungwon Lee, and Keunchang Kwak, "A Trend Analysis of Motion Capture Systems for Sports Motion Analysis," The Journal of Korean Institute of Information Technology, Vol.11, No.5, pp.191-201, 2013.
  5. Seoyeon Park, Haeun Chae, and Juhyun Lee, "A Study on the Potential Demands Related to Home-training Characteristics," Proceedings of KOSES 2018 Spring Conference, pp.77-78.
  6. Da Seul Joung, "Fitness exercise management and community service through interaction research among members and members of the group movement -Focus on mobile application design," Master's Thesis, Hongik University, 2020. 8.
  7. Na-Hee Hwang, Yeonu Park, Su-Min Jo, and Ki Young Lee, "Development of Motion Ability Measurement System Using Motion Recognition Technology," 2020 Summer Conference of IEIE, pp.2619-2620, 2020.
  8. Taeyong Ha and Hoojin Lee, "Implementation of Application for Smart Healthcare Exercise Management Based on Artificial Intelligence," Journal of the Institute of Electronics and Information Engineers, Vol.57, No.6, pp.44-51, 2020. https://doi.org/10.5573/ieie.2020.57.6.44
  9. Jae-Ho Jang, Jun-Hwan Jee, Du-Hwan Kim, Min-Gi Choi, and Tae-Jin Yun, "Development of exercise posture training system using deep learning for human posture recognition," Proceedings of the Korean Society of Computer Information Conference, Vol.28, No.2, pp.289-290, 2020.
  10. Soon-Ho Lee, "Development of an Analysis Program on Sport Competition," Korean Journal of Sport Science, Vol.18, No.4, pp.84-94, 2007. https://doi.org/10.24985/kjss.2007.18.4.84
  11. Sung Yong Kim, Jong Chul Park, Kyung Seok Byun, and Hee Young Baek, "Biomechanical Analysis of Throw Movement to Second Base in High School Elite Baseball Catchers," Korean Journal of Sport Biomechanics, Vol.30, No.2, pp.165-172, 2020. https://doi.org/10.5103/KJSB.2020.30.2.165
  12. Jeong-Ki Lee, Bo-Seob Heo, Yong-Jae Kim, and Hyo-Taek Lee, "Sports Biomechanical Analysis before and after Applying Weight Belt during Squat Exercise," Journal of Fishries and Marines Sciences Education, Vol.28, No.4, pp.893-902, 2016. https://doi.org/10.13000/JFMSE.2016.28.4.893
  13. Carl Paoli and Anthony Sherbondy, "free+style, maximize sport and life performance with four basic movements," Victory Belt Publishing, 2014.
  14. Mi-ohk Yoo and Kyoungju Park, "Comparison of the Character Movements from Key-frame and Motion Capture Animation," The Journal of the Korea Contents Association, Vol.8, No.9, pp.74-83, 2008. https://doi.org/10.5392/JKCA.2008.8.9.074
  15. Sang-Mi Shin and Jae-Lee Kim, "Reading Body and Movement: Theory and Practice of the Laban Movement Analysis," Ewha Womens University Press, 2010.
  16. Seung-Eun Yang, "Gesture Spotting by Web-Camera in Arbitrary Two Positions and Fuzzy Garbage Mode," KIPS Transactions on Software and Data Engineering, Vol.1, No.2, pp.127-136, 2012. https://doi.org/10.3745/KTSDE.2012.1.2.127
  17. Djamila Romaissa Beddiar, Brahim Nini, Mohammad Sabokrou, and Abdenour Hadid, "Vision-based human activity recognition: A survey," Multimedia Tools and Applications, Vol.79, pp.30509-30555, 2020. https://doi.org/10.1007/s11042-020-09004-3
  18. Hye-jeong Yun, Kwang-il Kim, Jeong-hun Lee, and Hae-Yeoun Lee, "Development of Experience Dance Game using Kinect Motion Capture," KIPS Transactions on Software and Data Engineering, Vol.3, No.1, pp.49-56, 2014. https://doi.org/10.3745/KTSDE.2014.3.1.49
  19. F. Han, B. Reily, W. Hoff, et al., "Space-time representation of people based on 3D skeletal data: A review," Computer Vision and Image Understanding, Vol.158, pp.85-105, 2017. https://doi.org/10.1016/j.cviu.2017.01.011
  20. Lee, Woojin and Kim, Young-Kwan, "Analysis of Coordination Patterns of Trunk and Pelvic Motions between Novices and Experts in Terms of Vector Coding Method in Cuban Rock Motion of Dance Sports," Official Journal of Korean Society of Dance Science, Vol.36, No.3, pp.73-86, 2019.
  21. Eui-Su Shin, "Kinetics Analysis of Goal Ball Turning Throw Motion," Korean Journal of Sports Science, Vol.29, No.5, pp.1151-1160, 2020. https://doi.org/10.35159/kjss.2020.10.29.5.1151
  22. Wikitionary - 자세 [Internet], https://ko.wiktionary.org/wiki/%EC%9E%90%EC%84%B8