DOI QR코드

DOI QR Code

Development of Composite Bipolar Plate for Vanadium Redox Flow Battery

바나듐 레독스 흐름 전지용 복합재료 분리판 개발

  • Lim, Jun Woo (Graduate School of Flexible and Printable Electronics & Department of Mechatronics Engineering & LANL-CBNU Engineering Institute-Korea, Jeonbuk National University)
  • Received : 2021.06.16
  • Accepted : 2021.06.17
  • Published : 2021.07.01

Abstract

Carbon/epoxy composite bipolar plate (BP) is a BP that is likely to replace existing graphite bipolar plate of vanadium redox flow cell (VRFB) due to its high mechanical properties and productivity. Multi-functional carbon/epoxy composite BP requires graphite coating or additional surface treatment to reduce interfacial contact resistance (ICR). However, the expanded graphite coating has the disadvantage of having low durability under VRFB operating conditions, and the surface treatments incur additional costs. In this work, an excessive resin absorption method is developed, which uniformly removes the resin rich area on the surface of the BP to expose carbon fibers by applying polyester fabric. This method not only reduces ICR by exposing carbon fibers to BP surfaces, but also forms a unique ditch pattern that can effectively hold carbon felt electrodes in place. The acidic environmental durability, mechanical properties, and gas permeability of the developed carbon/epoxy composite BP are experimentally verified.

탄소/에폭시 복합재료 분리판(BP)은 높은 기계적 특성과 생산성으로 인해 바나듐 레독스 흐름전지(VRFB)의 기존 흑연 분리판을 대체할 가능성이 있는 BP이다. 다기능 구조인 탄소/에폭시 복합재료 BP는 계면접촉저항(ICR)을 줄이기 위해 흑연 코팅 또는 추가 표면 처리가 필요하다. 그러나 팽창 흑연 코팅은 VRFB 작동 조건에서 낮은 내구성을 가지며 별도의 표면 처리는 추가 비용이 발생한다는 단점이 있다. 본 연구에서는 폴리에스테르 직물을 적용하여 탄소/에폭시 복합재료 BP 표면의 잉여 수지층을 균일하게 제거하여 탄소섬유를 노출시키는 잉여 수지 흡수법을 개발하였다. 이 방법은 BP 표면에 탄소섬유를 노출하여 ICR을 감소시킬 뿐만 아니라 탄소 펠트 전극을 효과적으로 고정할 수 있는 고유한 도랑 패턴을 형성한다. 잉여 수지 흡수법에 의해 제작된 복합재료 BP의 산성 환경 내구성, 기계적 특성 및 기체 투과도에 대해 실험적으로 검증하였다.

Keywords

Acknowledgement

본 연구는 한국연구재단의 지원을 받아 수행된 NRF-2019R1C1C1010418의 지원을 받아 수행된 것이며, 지원에 대해 진심으로 감사드립니다.

References

  1. Skyllas-Kazacos, M., SECONDARY BATTERIES - FLOW SYSTEMS | Vanadium Redox-Flow Batteries, Elsevier, Amsterdam, 2009, pp. 444-453.
  2. Yu, V.K., and Chen, D., "Peak Power Prediction of a Vanadium Redox Flow Battery," Journal of Power Sources, Vol. 268, 2014, pp. 261-268. https://doi.org/10.1016/j.jpowsour.2014.06.053
  3. Kim, K.H., Kim, B.G., and Lee, D.G., "Development of Carbon Composite Bipolar Plate (BP) for Vanadium Redox Flow Battery (VRFB)," Composite Structures, Vol. 109, 2014, pp. 253-259. https://doi.org/10.1016/j.compstruct.2013.11.002
  4. Kim, S., Thomsen, E., Xia, G., Nie, Z., Bao, J., Recknagle, K., Wang, W., Viswanathan, V., Luo, Q., Wei, X., Crawford, A., Coffey, G., Maupin, G., and Sprenkle, V., "1 kW/1 kWh Advanced Vanadium Redox Flow Battery Utilizing Mixed Acid Electrolytes," Journal of Power Sources, Vol. 237, 2013, pp. 300-309. https://doi.org/10.1016/j.jpowsour.2013.02.045
  5. Park, S.-K., Shim, J., Yang, J. H., Jin, C.-S., Lee, B.S., Lee, Y.-S., Shin, K.H., and Jeon, J.-D., "Effect of Inorganic Additive Sodium Pyrophosphate Tetrabasic on Positive Electrolytes for a Vanadium Redox Flow Battery," Electrochimica acta, Vol. 121, 2014, pp. 321-327. https://doi.org/10.1016/j.electacta.2014.01.008
  6. Xu, Q., Zhao, T.S., and Zhang, C., "Effects of SOC-dependent Electrolyte Viscosity on Performance of Vanadium Redox Flow Batteries," Applied Energy, Vol. 130, 2014, pp. 139-147. https://doi.org/10.1016/j.apenergy.2014.05.034
  7. Bartolozzi, M., "Development of Redox Flow Batteries. A Historical Bibliography," Journal of Power Sources, Vol. 27, No. 3, 1989, pp. 219-234. https://doi.org/10.1016/0378-7753(89)80037-0
  8. Lim, J.W., Lee, D., Kim, M., Choe, J., Nam, S., and Lee, D.G., "Composite Structures for Proton Exchange Membrane Fuel Cells (PEMFC) and Energy Storage Systems (ESS): Review," Composite Structures, Vol. 134, 2015, pp. 927-949. https://doi.org/10.1016/j.compstruct.2015.08.121
  9. Yu, H.N., Lim, J.W., Kim, M.K., and Lee, D.G., "Plasma Treatment of the Carbon Fiber Bipolar Plate for PEM Fuel Cell," Composite Structures, Vol. 94, No. 5, 2012, pp. 1911-1918. https://doi.org/10.1016/j.compstruct.2011.12.024
  10. Avasarala, B., and Haldar, P., "Effect of Surface Roughness of Composite Bipolar Plates on the Contact Resistance of a Proton Exchange Membrane Fuel Cell," Journal of Power Sources, Vol. 188, No. 1, 2009, pp. 225-229. https://doi.org/10.1016/j.jpowsour.2008.11.063
  11. Lee, D., Lim, J.W., Nam, S., Choi, I., and Lee, D.G., "Method for Exposing Carbon Fibers on Composite Bipolar Plates," Composite Structures, Vol. 134, 2015, pp. 1-9. https://doi.org/10.1016/j.compstruct.2015.07.123
  12. Lee, D., and Lee, D.G., "Electro-mechanical Properties of the Carbon Fabric Composites with Fibers Exposed on the Surface," Composite Structures, Vol. 140, 2016, pp. 77-83. https://doi.org/10.1016/j.compstruct.2015.12.066
  13. Lee, D., Choe, J., Nam, S., Lim, J.W., Choi, I., and Lee, D.G., "Development of Non-woven Carbon Felt Composite Bipolar Plates Using the Soft Layer Method," Composite Structures, Vol. 160, 2017, pp. 976-982. https://doi.org/10.1016/j.compstruct.2016.10.107
  14. Lee, D., and Lee, D.G., "Carbon Composite Bipolar Plate for High-temperature Proton Exchange Membrane Fuel Cells (HT-PEMFCs)," Journal of Power Sources, Vol. 327, 2016, pp. 119-126. https://doi.org/10.1016/j.jpowsour.2016.07.045
  15. Louis, M., Joshi, S.P., and Brockmann, W., "An Experimental Investigation of Through-thickness Electrical Resistivity of CFRP Laminates," Composites Science and Technology, Vol. 61, No. 6, 2001, pp. 911-919. https://doi.org/10.1016/S0266-3538(00)00177-9
  16. Lim, J.W., and Lee, D.G., "Development of Composite-metal Hybrid Bipolar Plates for PEM Fuel Cells," International Journal of Hydrogen Energy, Vol. 37, No. 17, 2012, pp. 12504-12512. https://doi.org/10.1016/j.ijhydene.2012.06.002
  17. Inagaki, M., Iwashita, N., and Kouno, E., "Potential Change with Intercalation of Sulfuric Acid into Graphite by Chemical Oxidation," Carbon, Vol. 28, No. 1, 1990, pp. 49-55. https://doi.org/10.1016/0008-6223(90)90092-D
  18. Lim, J.W., and Lee, D.G., "Carbon Fiber/polyethylene Bipolar Plate-carbon Felt Electrode Assembly for Vanadium Redox Flow Batteries (VRFB)," Composite Structures, Vol. 134, 2015, pp. 483-492. https://doi.org/10.1016/j.compstruct.2015.08.057
  19. Choe, J., Kim, K.H., and Lee, D.G., "Corrugated Carbon/epoxy Composite Bipolar Plate for Vanadium Redox Flow Batteries," Composite Structures, Vol. 119, 2015, pp. 534-542. https://doi.org/10.1016/j.compstruct.2014.09.022
  20. Du, L., and Jana, S.C., "Highly Conductive Epoxy/graphite Composites for Bipolar Plates in Proton Exchange Membrane Fuel Cells," Journal of Power Sources, Vol. 172, No. 2, 2007, pp. 734-741. https://doi.org/10.1016/j.jpowsour.2007.05.088