DOI QR코드

DOI QR Code

Effect of Sintering Condition on Tensile Strength of Fe-based Non-equiatomic High Entropy Alloy

철계 비동일분율 고엔트로피 합금의 인장 강도에 미치는 소결 조건 영향

  • Seo, Namhyuk (Division of Advanced Materials Engineering, Research Center for Advanced Materials Development, Jeonbuk National University) ;
  • Jeon, Junhyub (Division of Advanced Materials Engineering, Research Center for Advanced Materials Development, Jeonbuk National University) ;
  • Kim, Gwanghun (Division of Advanced Materials Engineering, Research Center for Advanced Materials Development, Jeonbuk National University) ;
  • Park, Jungbin (Division of Advanced Materials Engineering, Research Center for Advanced Materials Development, Jeonbuk National University) ;
  • Son, Seung Bae (Division of Advanced Materials Engineering, Research Center for Advanced Materials Development, Jeonbuk National University) ;
  • Lee, Seok-Jae (Division of Advanced Materials Engineering, Research Center for Advanced Materials Development, Jeonbuk National University)
  • 서남혁 (전북대학교 신소재공학부) ;
  • 전준협 (전북대학교 신소재공학부) ;
  • 김광훈 (전북대학교 신소재공학부) ;
  • 박정빈 (전북대학교 신소재공학부) ;
  • 손승배 (전북대학교 신소재공학부) ;
  • 이석재 (전북대학교 신소재공학부)
  • Received : 2021.05.27
  • Accepted : 2021.06.26
  • Published : 2021.06.28

Abstract

We fabricate the non-equiatomic high-entropy alloy (NE-HEA) Fe49.5Mn30Co10Cr10C0.5 (at.%) using spark plasma sintering under various sintering conditions. Each elemental pure powder is milled by high-energy ball milling to prepare NE-HEA powder. The microstructure and mechanical properties of the sintered samples are investigated using various methods. We use the X-ray diffraction (XRD) method to investigate the microstructural characteristics. Quantitative phase analysis is performed by direct comparison of the XRD results. A tensile test is used to compare the mechanical properties of small samples. Next, electron backscatter diffraction analysis is performed to analyze the phase fraction, and the results are compared to those of XRD analysis. By combining different sintering durations and temperature conditions, we attempt to identify suitable spark plasma sintering conditions that yield mechanical properties comparable with previously reported values. The samples sintered at 900 and 1000℃ with no holding time have a tensile strength of over 1000 MPa.

Keywords

Acknowledgement

This work was supported by a Korea Institute for Advancement of Technology grant, funded by the Korea Government (MOTIE) (P0002019), as part of the Competency Development Program for Industry Specialists.

References

  1. J. W. Yeh: JOM, 65 (2013) 1759. https://doi.org/10.1007/s11837-013-0761-6
  2. D. B. Miracle and O. N. Senkov: Acta Mater., 122 (2017) 448. https://doi.org/10.1016/j.actamat.2016.08.081
  3. Z. Li, C. C. Tasan, H. Springer, B. Gault and D. Raabe: Sci. Rep., 7 (2017) 40704. https://doi.org/10.1038/srep40704
  4. Z. Li and D. Raabe: JOM, 69 (2017) 2099. https://doi.org/10.1007/s11837-017-2540-2
  5. A. K. Maurya, P. L Narayana, H. I. Kim and N. S. Reddy: J. Korean Powder Metall. Inst., 27 (2020) 365. https://doi.org/10.4150/KPMI.2020.27.5.365
  6. J. Jeon, J. Kim and H. Choi: J. Korean Powder Metall. Inst., 27 (2020) 203. https://doi.org/10.4150/KPMI.2020.27.3.203
  7. Y. Y. Kim and K. K. Cho: J. Korean Powder Metall. Inst., 27 (2020) 31. https://doi.org/10.4150/KPMI.2020.27.1.31
  8. N. Chawake, L. Raman, P. Ramasamy, P. Ghosh, F. Spieckermann, C. Gammer, B. S. Murty, R. S. Kottada and J. Eckert: Scr. Mater., 191 (2021) 46. https://doi.org/10.1016/j.scriptamat.2020.09.015
  9. R. Shashanka, O. Uzun and D. Chaira: Arch. Metall. Mater., 65 (2020) 5.
  10. C. Suryanarayana: Prog. Mater. Sci., 46 (2001) 1. https://doi.org/10.1016/S0079-6425(99)00010-9
  11. N. Seo, J. Jeon, S. Choi, Y. H. Moon, I. J. Shon and S. J. Lee: Arch. Metall. Mater., 65 (2020) 1005.
  12. J. Jeon, S. Choi, N. Seo, Y. H. Moon, I. J. Shon and S. J. Lee: Arch. Metall. Mater., 65 (2020) 1249.
  13. N. Seo, J. Jeon, G. Kim, J. Park, S. B. Son and S. J. Lee: J. Korean Powder Metall. Inst., 28 (2021) 103. https://doi.org/10.4150/KPMI.2021.28.2.103
  14. Z. Wang, W. Lu, D. Raabe and Z. Li: J. Alloys Compd., 781 (2019) 734. https://doi.org/10.1016/j.jallcom.2018.12.061
  15. J. Su, D. Raabe and Z. Li: Acta Mater., 163 (2019) 40. https://doi.org/10.1016/j.actamat.2018.10.017
  16. J. Su, X. Wu, D. Raabe and Z. Li: Acta Mater., 167 (2019) 23. https://doi.org/10.1016/j.actamat.2019.01.030
  17. C. Capdevial, F. G. Caballero, C. Garcia-Mateo and C. G. de Andres: Mater. Trans., 45 (2004) 2678. https://doi.org/10.2320/matertrans.45.2678
  18. S. J. Lee and Y. K. Lee: Mater. Sci. Forum, 475-479 (2005) 3169.
  19. S. J. Lee and K. S. Park: Metall. Mater. Trans. A, 44 (2013) 3423. https://doi.org/10.1007/s11661-013-1798-4
  20. S. J. Oh, J. Jeon, I. J. Shon and S. J. Lee: J. Korean Powder Metall. Inst., 26 (2019) 389. https://doi.org/10.4150/KPMI.2019.26.5.389
  21. S. J. Lee, S. Lee and B. C. De Cooman: Int. J. Mater. Res., 104 (2013) 423. https://doi.org/10.3139/146.110882
  22. S. J. Oh, D. Park, K. Kim, I. J. Shon and S. J. Lee: Mater. Sci. Eng. A, 725 (2018) 382. https://doi.org/10.1016/j.msea.2018.04.051
  23. S. J. Lee and C. J. Van Tyne: Metall. Mater. Trans. A, 44 (2013) 2455. https://doi.org/10.1007/s11661-013-1706-y
  24. S. Choi, N. Seo, J. Jun, S. B. Son and S. J. Lee: J. Korean Powder Metall. Inst., 27 (2020) 414. https://doi.org/10.4150/KPMI.2020.27.5.414
  25. S. Choi, J. Jeon, N. Seo, Y. H. Moon, I. J. Shon and S. J. Lee: Arch. Metall. Mater., 65 (2020) 1001.
  26. T. Hanamura, S. Torizuka, S. Tamura, S. Enokida and H. Takechi: ISIJ Int., 53 (2013) 2218. https://doi.org/10.2355/isijinternational.53.2218