DOI QR코드

DOI QR Code

Ru Nanoparticle이 첨가된 Sn-58Bi 솔더의 기계적 신뢰성 및 계면반응에 관한 연구

Mechanical Properties and Interfacial Reactions of Ru Nanoparticles Added Sn-58Bi Solder Joints

  • 김병우 (조선대학교 용접.접합과학공학과) ;
  • 최혁기 (조선대학교 용접.접합과학공학과) ;
  • 전혜원 (조선대학교 용접.접합과학공학과) ;
  • 이도영 (조선대학교 용접.접합과학공학과) ;
  • 손윤철 (조선대학교 용접.접합과학공학과)
  • Kim, Byungwoo (Dept. of Welding & Joining Science Engineering, Chosun University) ;
  • Choi, Hyeokgi (Dept. of Welding & Joining Science Engineering, Chosun University) ;
  • Jeon, Hyewon (Dept. of Welding & Joining Science Engineering, Chosun University) ;
  • Lee, Doyeong (Dept. of Welding & Joining Science Engineering, Chosun University) ;
  • Sohn, Yoonchul (Dept. of Welding & Joining Science Engineering, Chosun University)
  • 투고 : 2021.06.10
  • 심사 : 2021.06.29
  • 발행 : 2021.06.30

초록

대표적인 저온솔더인 Sn-58Bi에 Ru nanoparticles을 첨가하여 Sn-58Bi-xRu 복합솔더를 제작하고 Cu/OSP 및 ENIG 표면처리된 PCB 기판과 반응시켜 계면반응 및 솔더조인트 신뢰성을 분석하였다. Cu/OSP와의 반응에서 형성된 Cu6Sn5 IMC는 Ru 함량에 따른 두께 변화가 거의 없고 100hr aging 후에도 큰 변화없이 고속 전단시험시 솔더 내부로 연성파괴가 발생하였다. ENIG 와의 반응시에는 Ru 함량이 증가함에 따라서 Ni3Sn4 IMC 두께가 감소하는 경향을 보였으며 일부 시편에서 ENIG 특유의 취성파괴 현상이 발견되었다. Ru 원소는 계면 부근에서 발견되지 않아서 계면반응에 크게 관여하지 않는 것으로 판단되며 주로 Bi phase와 함께 존재하는 것으로 분석되고 있는데 어떠한 형태로 두 원소가 공존하고 있는지에 대해서는 추가적인 연구가 필요하다.

Sn-58Bi-xRu composite solders were prepared by adding Ru nanoparticles to Sn-58Bi, a typical low-temperature solder, and the interfacial reaction and solder joint reliability were analyzed by reacting with Cu/OSP and ENIG surface treated PCB boards. The Cu6Sn5 IMC formed by the reaction with Cu/OSP had little change in thickness depending on the Ru content, and ductile fracture occurred inside the solder during the high-speed shear test without any significant change even after 100 hr aging. In reaction with ENIG, the Ni3Sn4 IMC thickness tended to decrease as the Ru content increased, and ENIG-specific brittle fracture was found in some specimens. Since Ru element is not found near the interface, it is judged not to be significantly involved in the interfacial reaction, and it is analyzed that it mainly exists together with the Bi phase.

키워드

과제정보

본 결과물은 2021년도 교육부의 재원으로 한국연구재단의 지원을 받아 수행된 지자체-대학 협력기반 지역혁신 사업의 결과입니다.

참고문헌

  1. K. Tu, and K. Zeng. "Tin-lead (SnPb) solder reaction in flip chip technology", Mater. Sci. Eng. C., 34(1), 1 (2001). https://doi.org/10.1016/S0927-796X(01)00029-8
  2. J. W. Yoon, W. C. Moon, and S. B. Jung, "Interfacial reaction of ENIG/Sn-Ag-Cu/ENIG sandwich solder joint during isothermal aging", Microelectronic Eng., 83(11-12), 2329 (2006). https://doi.org/10.1016/j.mee.2006.10.027
  3. H. ma and, J. C. Suhling, "A review of mechanical properties of lead-free solders for electronic packaging", J. Mater. Sci., 44(5), 1141 (2009). https://doi.org/10.1007/s10853-008-3125-9
  4. I. E. Anderson, "Development of Sn-Ag-Cu and Sn-Ag-CuX alloys for Pb-free electronic solder applications", Lead-Free Electron. Solders., 55 (2006).
  5. W. R. Osorio, L. C. ,Peixoto, L. R. Garcia, N. Mangelinck-Noel, and A. Garcia, "Microstructure and mechanical properties of Sn-Bi, Sn-Ag and Sn-Zn lead-free solder alloys", J. Alloys Compd., 572, 97 (2013). https://doi.org/10.1016/j.jallcom.2013.03.234
  6. T.Laurila, V. Vuorinen, and M. Paulasto-Krockel. "Impurity and alloying effects on interfacial reaction layers in Pb-free soldering", Mater. Sci. Eng. C., 68(1-2), 1 (2010). https://doi.org/10.1016/j.mser.2009.12.001
  7. Y. Goh, A. S. M. A. Haseeb, and M. F. M Sabri. "Effects of hydroquinone and gelatin on the electrodeposition of Sn-Bi low temperature Pb-free solder", Electrochim. Acta., 90(15), 265 (2013). https://doi.org/10.1016/j.electacta.2012.12.036
  8. Y. Xu, H. Xu, H. Li, J. Xia, C. Liu, and L. Liu. "Retarding the electromigration effects to the eutectic SnBi solder joints by micro-sized Ni-particles reinforcement approach", J. Alloys Compd., 509(7), 3286 (2011). https://doi.org/10.1016/j.jallcom.2010.11.193
  9. S. K. Lin, T. L. Nguyen, S. C. Wu, and Y. H. Wang. "Effective suppression of interfacial intermetallic compound growth between Sn-58 wt.% Bi solders and Cu substrates by minor Ga addition", J. Alloys Compd., 586, 319 (2014). https://doi.org/10.1016/j.jallcom.2013.10.035
  10. J. Shen, Y. Pu, H. Yin, D. Luo, and J. Chen. "Effects of minor Cu and Zn additions on the thermal, microstructure and tensile properties of Sn-Bi-based solder alloys", J. Alloys Compd., 614, 63 (2014). https://doi.org/10.1016/j.jallcom.2014.06.015
  11. M. Usui, T. Satoh, H. Kimura, S. Tajima, Y. Hayashi, D. Setoyama, and M. Kato. "Effects of thermal aging on Cu nanoparticle/Bi-Sn solder hybrid bonding", Microelectron. Reliab., 78, 93 (2017). https://doi.org/10.1016/j.microrel.2017.07.096
  12. L. Yang, L. Zhu, L. Zhang, S. Zhou, Y. Xiong, and P. Wu. "Microstructural evolution and IMCs growth behavior of Sn58Bi-0.25 Mo solder joint during aging treatment", Mater. Res. Express., 5(2), 026304 (2018). https://doi.org/10.1088/2053-1591/aaad71
  13. W. Dong, Y. Shi, Z. Xia, Y. Lei, and F. Guo. "Effects of trace amounts of rare earth additions on microstructure and properties of Sn-Bi-based solder alloy", J. Electron. Mater., 37(7), 982 (2008). https://doi.org/10.1007/s11664-008-0458-8
  14. C. Andersson, P.E. Tegehall, D. R. Andersson, G. Wetter, and J. LIu. "Thermal cycling aging effect on the shear strength, microstructure, intermetallic compounds (IMC) and crack initiation and propagation of reflow soldered Sn-3.8 Ag-0.7 Cu and wave soldered Sn-3.5 Ag ceramic chip components", IEEE, Trans. Comp. Packag. Manufac. Tech., 31(2), 331 (2008).
  15. J. W. Yoon, and S. B. Jung. "Effect of isothermal aging on intermetallic compound layer growth at the interface between Sn-3.5 Ag-0.75 Cu solder and Cu substrate", J. Mater. Sci., 39(13), 4211 (2004). https://doi.org/10.1023/B:JMSC.0000033401.38785.73
  16. Y. C. Sohn, Jin Yu, S. K. Kang, D. Y. Shih and T. Y. Lee, "Spalling of intermetallic compounds during the reaction between lead-free solders and electroless Ni-P metallization", J. Mater. Res., 19(8), 2428-2436 (2004). https://doi.org/10.1557/JMR.2004.0297
  17. Y. C. Sohn "Effect of Morphological Change of Ni3Sn4 Intermetallic Compounds on the Growth Kinetics in Electroless Ni-P/Sn-3.5Ag Solder Joint", Metall and Mat Trans A 51, 2905-2914 (2020). https://doi.org/10.1007/s11661-020-05739-8
  18. J. Charles, J. J. Kuntz, J. C. Gachon et al. "A thermodynamic assessment of the ruthenium-tin (Ru-Sn) system", J. Phase Equil. 20, 573 (1999). https://doi.org/10.1361/105497199770340563
  19. Moffatt, W.G., "Binary Phase Diagrams Handbook", General Electric Comp., Schenectady, N.Y., (1978).
  20. T.Y. Kang, Y.Y. Xiu, C.Z. Liu, L. Hui, J.J. Wang, and W.P. Tong, "Bismuth segregation enhances intermetallic compound growth in SnBi/Cu microelectronic interconnect", J. Alloy Compd 509, 1785-1789 (2011). https://doi.org/10.1016/j.jallcom.2010.10.040
  21. P.J. Shang, Z.Q. Liu, D.X. Li, and J.K. Shang, "Bi-induced voids at the Cu3Sn/Cu interface in eutectic SnBi/Cu solder joints", Scr. Mater. 58, 409-412 (2008). https://doi.org/10.1016/j.scriptamat.2007.10.025
  22. Y. C. Sohn and Jin Yu, "Correlation between chemical reaction and brittle fracture found in electroless Ni(P)/immersion gold-solder interconnection", J. Mater. Res. 20, 1931-1934 (2005). https://doi.org/10.1557/JMR.2005.0246
  23. C. Key Chung, Y.J. Chen, W.M. Chen, and C.R. Kao, "Origin and evolution of voids in electroless Ni during soldering reaction", Acta Mater. 60(11), 4586-4593 (2012). https://doi.org/10.1016/j.actamat.2012.02.018
  24. W. I. Seo, M. S. Kim, Y. H. Ko et al. "Growth of intermetallic compounds and brittle fracture behavior of Sn-Ag-Cu/ENIG joint with columnar Ni-P layer", J Mater Sci: Mater Electron 32, 1042-1051 (2021). https://doi.org/10.1007/s10854-020-04879-2