과제정보
본 결과물은 2021년도 교육부의 재원으로 한국연구재단의 지원을 받아 수행된 지자체-대학 협력기반 지역혁신 사업의 결과입니다.
참고문헌
- K. Tu, and K. Zeng. "Tin-lead (SnPb) solder reaction in flip chip technology", Mater. Sci. Eng. C., 34(1), 1 (2001). https://doi.org/10.1016/S0927-796X(01)00029-8
- J. W. Yoon, W. C. Moon, and S. B. Jung, "Interfacial reaction of ENIG/Sn-Ag-Cu/ENIG sandwich solder joint during isothermal aging", Microelectronic Eng., 83(11-12), 2329 (2006). https://doi.org/10.1016/j.mee.2006.10.027
- H. ma and, J. C. Suhling, "A review of mechanical properties of lead-free solders for electronic packaging", J. Mater. Sci., 44(5), 1141 (2009). https://doi.org/10.1007/s10853-008-3125-9
- I. E. Anderson, "Development of Sn-Ag-Cu and Sn-Ag-CuX alloys for Pb-free electronic solder applications", Lead-Free Electron. Solders., 55 (2006).
- W. R. Osorio, L. C. ,Peixoto, L. R. Garcia, N. Mangelinck-Noel, and A. Garcia, "Microstructure and mechanical properties of Sn-Bi, Sn-Ag and Sn-Zn lead-free solder alloys", J. Alloys Compd., 572, 97 (2013). https://doi.org/10.1016/j.jallcom.2013.03.234
- T.Laurila, V. Vuorinen, and M. Paulasto-Krockel. "Impurity and alloying effects on interfacial reaction layers in Pb-free soldering", Mater. Sci. Eng. C., 68(1-2), 1 (2010). https://doi.org/10.1016/j.mser.2009.12.001
- Y. Goh, A. S. M. A. Haseeb, and M. F. M Sabri. "Effects of hydroquinone and gelatin on the electrodeposition of Sn-Bi low temperature Pb-free solder", Electrochim. Acta., 90(15), 265 (2013). https://doi.org/10.1016/j.electacta.2012.12.036
- Y. Xu, H. Xu, H. Li, J. Xia, C. Liu, and L. Liu. "Retarding the electromigration effects to the eutectic SnBi solder joints by micro-sized Ni-particles reinforcement approach", J. Alloys Compd., 509(7), 3286 (2011). https://doi.org/10.1016/j.jallcom.2010.11.193
- S. K. Lin, T. L. Nguyen, S. C. Wu, and Y. H. Wang. "Effective suppression of interfacial intermetallic compound growth between Sn-58 wt.% Bi solders and Cu substrates by minor Ga addition", J. Alloys Compd., 586, 319 (2014). https://doi.org/10.1016/j.jallcom.2013.10.035
- J. Shen, Y. Pu, H. Yin, D. Luo, and J. Chen. "Effects of minor Cu and Zn additions on the thermal, microstructure and tensile properties of Sn-Bi-based solder alloys", J. Alloys Compd., 614, 63 (2014). https://doi.org/10.1016/j.jallcom.2014.06.015
- M. Usui, T. Satoh, H. Kimura, S. Tajima, Y. Hayashi, D. Setoyama, and M. Kato. "Effects of thermal aging on Cu nanoparticle/Bi-Sn solder hybrid bonding", Microelectron. Reliab., 78, 93 (2017). https://doi.org/10.1016/j.microrel.2017.07.096
- L. Yang, L. Zhu, L. Zhang, S. Zhou, Y. Xiong, and P. Wu. "Microstructural evolution and IMCs growth behavior of Sn58Bi-0.25 Mo solder joint during aging treatment", Mater. Res. Express., 5(2), 026304 (2018). https://doi.org/10.1088/2053-1591/aaad71
- W. Dong, Y. Shi, Z. Xia, Y. Lei, and F. Guo. "Effects of trace amounts of rare earth additions on microstructure and properties of Sn-Bi-based solder alloy", J. Electron. Mater., 37(7), 982 (2008). https://doi.org/10.1007/s11664-008-0458-8
- C. Andersson, P.E. Tegehall, D. R. Andersson, G. Wetter, and J. LIu. "Thermal cycling aging effect on the shear strength, microstructure, intermetallic compounds (IMC) and crack initiation and propagation of reflow soldered Sn-3.8 Ag-0.7 Cu and wave soldered Sn-3.5 Ag ceramic chip components", IEEE, Trans. Comp. Packag. Manufac. Tech., 31(2), 331 (2008).
- J. W. Yoon, and S. B. Jung. "Effect of isothermal aging on intermetallic compound layer growth at the interface between Sn-3.5 Ag-0.75 Cu solder and Cu substrate", J. Mater. Sci., 39(13), 4211 (2004). https://doi.org/10.1023/B:JMSC.0000033401.38785.73
- Y. C. Sohn, Jin Yu, S. K. Kang, D. Y. Shih and T. Y. Lee, "Spalling of intermetallic compounds during the reaction between lead-free solders and electroless Ni-P metallization", J. Mater. Res., 19(8), 2428-2436 (2004). https://doi.org/10.1557/JMR.2004.0297
- Y. C. Sohn "Effect of Morphological Change of Ni3Sn4 Intermetallic Compounds on the Growth Kinetics in Electroless Ni-P/Sn-3.5Ag Solder Joint", Metall and Mat Trans A 51, 2905-2914 (2020). https://doi.org/10.1007/s11661-020-05739-8
- J. Charles, J. J. Kuntz, J. C. Gachon et al. "A thermodynamic assessment of the ruthenium-tin (Ru-Sn) system", J. Phase Equil. 20, 573 (1999). https://doi.org/10.1361/105497199770340563
- Moffatt, W.G., "Binary Phase Diagrams Handbook", General Electric Comp., Schenectady, N.Y., (1978).
- T.Y. Kang, Y.Y. Xiu, C.Z. Liu, L. Hui, J.J. Wang, and W.P. Tong, "Bismuth segregation enhances intermetallic compound growth in SnBi/Cu microelectronic interconnect", J. Alloy Compd 509, 1785-1789 (2011). https://doi.org/10.1016/j.jallcom.2010.10.040
- P.J. Shang, Z.Q. Liu, D.X. Li, and J.K. Shang, "Bi-induced voids at the Cu3Sn/Cu interface in eutectic SnBi/Cu solder joints", Scr. Mater. 58, 409-412 (2008). https://doi.org/10.1016/j.scriptamat.2007.10.025
- Y. C. Sohn and Jin Yu, "Correlation between chemical reaction and brittle fracture found in electroless Ni(P)/immersion gold-solder interconnection", J. Mater. Res. 20, 1931-1934 (2005). https://doi.org/10.1557/JMR.2005.0246
- C. Key Chung, Y.J. Chen, W.M. Chen, and C.R. Kao, "Origin and evolution of voids in electroless Ni during soldering reaction", Acta Mater. 60(11), 4586-4593 (2012). https://doi.org/10.1016/j.actamat.2012.02.018
- W. I. Seo, M. S. Kim, Y. H. Ko et al. "Growth of intermetallic compounds and brittle fracture behavior of Sn-Ag-Cu/ENIG joint with columnar Ni-P layer", J Mater Sci: Mater Electron 32, 1042-1051 (2021). https://doi.org/10.1007/s10854-020-04879-2