DOI QR코드

DOI QR Code

다양한 eVTOL 유형별 호버 효율, 회전판 하중 및 필요 배터리 비에너지 분석

Analyses of Hover Lift Efficiency, Disc Loading and Required Battery Specific Energy for Various eVTOL Types

  • 김동희 (세종대학교 물리천문학과, 항공우주공학과) ;
  • 장한용 (세종대학교 항공우주공학과) ;
  • 황호연 (세종대학교 항공우주공학과, 지능형드론 융합전공학과)
  • Kim, Dong-Hee (Department of Physics and Astronomy, and Department of Aerospace Engineering, Sejong University) ;
  • Jang, Han-Yong (Department of Aerospace Engineering, Sejong University) ;
  • Hwang, Ho-Yon (Department of Aerospace Engineering, and Department of Convergence Engineering for Intelligent Drone, Sejong University)
  • 투고 : 2021.06.01
  • 심사 : 2021.06.25
  • 발행 : 2021.06.30

초록

전 세계의 많은 대도시는 도시화에 따른 지상 및 지하 교통망이 포화되고 있다. 또한 지구온난화 방지를 위한 탄소배출 규제가 더욱 엄격해지고 있으며 이러한 문제의 해결책으로 복잡한 도심에서도 운행 가능한 eVTOL이 차세대 친환경 교통수단으로 각광받고 있다. 본 연구에서는 eVTOL을 멀티콥터형, 양력+순항형, 추력편향형으로 분류하여 각 유형별 eVTOL들의 호버 효율과 회전판 하중을 계산하였으며 공력해석 프로그램인 OpenVSP, Fluent와 JavaProp을 이용하여 각국의 감항당국 및 우버 사에서 발표한 보고서를 바탕으로 가까운 미래에 실현될 eVTOL의 원활한 운행에 필요한 배터리 비에너지를 계산하고 분석하였다.

In many metropolitan cities around the world, ground and underground transportation networks are saturated due to urbanization. In addition, regulations on carbon emissions to prevent global warming are becoming stricter, and eVTOL, which will be operating in complex cities, is gaining popularity as the next generation of eco-friendly transportation. In this study, the hover lift efficiency and disc loading of eVTOLs for each type were calculated by classifying eVTOLs into following types: multicopter, lift+cruise, and vectored thrust. In addition, using the aerodynamic analysis programs OpenVSP, Fluent and Javaprop, the specific battery energy required for the smooth operation of eVTOL, which will be realized in the near future, was calculated and analyzed base on reports published by Uber and airworthiness authorities of each country.

키워드

과제정보

본 연구는 국토교통부/국토교통과학기술진흥원과 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원으로 수행되었음(과제번호 21CTAP-C157731-02, 2019R1F1A1042533)

참고문헌

  1. Forbes, The end of internal combustion engine cars, [Internet]. Available: https://www.forbes.com/sites/peterlyon/2020/09/27/will-the-internal-combustion-enginereally-take-a-back-seat-to-evs/?sh=7cbd08d653d5
  2. Volocopter, Volocopter white paper 2.0, [Internet]. Available: https://www.volocopter.com/content/uploads/20210324_Volocopter_WhitePaper_Roadmap_to_scalable_UAM.pdf
  3. Roland Berger, roland berger urban air mobility 1, [Internet]. Available: https://www.rolandberger.com/publications/publication_pdf/roland_berger_urban_air_mobility_1.pdf
  4. eVTOL News, eVTOL Aircraft Directory, [Internet]. Availble: https://evtol.news/aircraft
  5. FAA, Type certification for UAM - Back to the future, [Internet]. Available: https://www.faa.gov/uas/resources/events_calendar/archive/2019_uas_symposium/media/Type_Certification_for_UAS-Back_to_the_Future.pdf
  6. EASA, Special Condition for small-category VTOL aircraft, [Internet]. Available: https://www.easa.europa.eu/sites/default/files/dfu/SC-VTOL-01.pdf
  7. Ehang, ehang 216, [Internet]. Available: https://www.ehang.com/uam/
  8. wikipedia, cityairbus [Internet]. Available: https://en.wikipedia.org/wiki/Airbus_CityAirbus
  9. A. Bacchini, "Electric VTOL Configurations Comparison," Aerospace, Vol. 6, No. 3, pp. 26, 2019. https://doi.org/10.3390/aerospace6030026
  10. Beta, ALIA, [Internet]. Available: https://www.beta.team/
  11. Lilium, Architectural performance assessment of an electric vertical take-off and landing (e-VTOL) aircraft based on a ducted vectored thrust concept, [Internet]. Available: https://lilium.com/files/redaktion/refresh_feb2021/investors/Lilium_7-Seater_Paper.pdf
  12. Archer, archer maker, [Internet]. Available: https://www.archer.com/
  13. Wikipedia, disk loading, [Internet]. Available: https://en.wikipedia.org/wiki/Disk_loading
  14. Uber, uber white paper, [Internet]. Available: https://www.uber.com/elevate.pdf
  15. R. W. Prouty, Helicopter Performance, Stability and Control, malabar, FL: Krieger publishing company, 2002.
  16. J. Gordon Leishman, Principles of Helicopter Aerodynamics, 2nd ed, New York, NY: Cambridge university press, 2006.
  17. Freedom Motors, Performance Evaluation of Select Personal Air Vehicles, [Internet]. Available: https://freedom-motors.com/brochures/Performance%20Evaluation%20of%20Select%20Air%20Vehicles%20June%202020%20v7.pdf
  18. eVTOL News, Beta ALIA, [Internet]. Available: https://evtol.news/news/us-air-force-primes-the-evtol-industry
  19. Uber, UberAir Vehicle Requirements and Missions, [Internet]. Available: https://s3.amazonaws.com/uber-static/elevate/Summary+Mission+and+Requirements.pdf
  20. Fran Hoffart, "Proper care extends li-ion battery life," Power Electronics Technology, Vol. 34, No. 4, pp. 24-28, 2008.
  21. M. Hepperle, "Electronic flight - potential and limitations," in AVT-209 Workshop in Energy Efficient Technologies and Concepts Operation, Lisbon: Portugal, pp. 9-14, March, 2012.
  22. OpenVSP, [Internet]. Available: http://openvsp.org/.
  23. Moller International, critique of battery powered flying cars, [Internet]. Available: https://moller.com/brochures/Critique-of- Battery-Powered-Flying-Cars.pdf
  24. Vertical, CityAirbus, [Internet]. Available: https://verticalmag.com/news/cityairbus-evtol-urban-air-mobilityprogram-presses-ahead/
  25. Aviation Today, Airbus' Vahana, [Internet]. Available: https://www.aviationtoday.com/2019/10/16/airbus-vahanademonstrator-complete-flight-test-campaign-year/
  26. Forbes, Has Joby Cracked The Power Problem To Make Electric Air Taxis Work?, [Internet]. Available: https://www.forbes.com/sites/jeremybogaisky/2020/11/23/joby-batteries-electric-aviation/?sh=67871f3d76a7
  27. RMI, Breakthrough batteries, [Internet]. Available: https://rmi.org/wp-content/uploads/2019/10/rmi_breakthrough_batteries.pdf
  28. PushEVs, Battery cells with hugest energy density in China, [Internet]. Available: https://pushevs.com/2020/06/10/battery-cells-with-highest-energy-density-in-china/