DOI QR코드

DOI QR Code

A Residual Ionospheric Error Model for Single Frequency GNSS Users in the Korean Region

한국지역에서의 단일주파수 GNSS 사용자를 위한 전리층 잔류 오차 모델 개발

  • Yoon, Moonseok (GNSS R&D Division, Korea Aerospace Research Institute) ;
  • Ahn, Jongsun (GNSS R&D Division, Korea Aerospace Research Institute) ;
  • Joo, Jung -Min (GNSS R&D Division, Korea Aerospace Research Institute)
  • 윤문석 (한국항공우주연구원 위성항법사업부) ;
  • 안종선 (한국항공우주연구원 위성항법사업부) ;
  • 주정민 (한국항공우주연구원 위성항법사업부)
  • Received : 2021.05.21
  • Accepted : 2021.06.28
  • Published : 2021.06.30

Abstract

Ionosphere, one of the largest error sources, can pose potentially harmful threat to single-frequency GNSS (global navigation satellite system) user even after applying ionospheric corrections to their GNSS measurements. To quantitatively assess ionospheric impacts on the satellite navigation-based applications using simulation, the standard deviation of residual ionospheric errors is needed. Thus, in this paper, we determine conservative statistical quantity that covers typical residual ionospheric errors for nominal days. Extensive data-processing computes TEC (total electron content) estimates from GNSS measurements collected from the Korean reference station networks. We use Klobuchar model as a correction to calculate residual ionospheric errors from TEC (total electron content) estimate. Finally, an exponential delay model for residual ionospheric errors is presented as a function of local time and satellite elevation angle.

GNSS (global navigation satellite system)측정치 보정 후에 남아 있는 전리층 잔류 오차에 대해 시뮬레이션 기반의 영향분석(오차 및 서비스 영역 분석 등)을 수행하기 위해서는 위해서는 전리층 잔류 오차에 대한 통계적 모델링이 필수적으로 선행되어야 한다. 본 논문에서는 국내 GNSS 측정치 및 Klobuchar 모델을 활용하여 국내 정상상태 전리층 환경에서의 전리층 잔류 오차에 대한 보수적인 표준편차의 해석적 모델을 도출하였다. 다양한 전리층 활동 상태를 포함하기 위해 미(美) CAT I (category I) LAAS (local-area augmentation system) 전리층 통계치 산출일 중 ROTI (rate-of-tec index) 지수를 활용하여 전리층 활동이 비정상적인 날짜는 제외하고 GNSS 분석 데이터를 구성하였다. GNSS 데이터 처리를 통해 전리층 잔류 오차를 계산하고, 잔류 오차 거동의 특성을 근거하여 지역 시 및 위성 앙각에 따라 통계치를 산출하였다. 마지막으로 전리층 잔류 오차의 확률적 거동을 보수적으로 포함할 수 있는 표준편차값에 대한 해석적 모델을 감쇠 지수 접합을 통해 도출하였다.

Keywords

Acknowledgement

이 논문은 정부(과학기술정보통신부)의 재원으로 한국항공우주연구원의 지원을 받아 수행된 연구임 (No. 1711135077)

References

  1. S. Datta-Barua, J. Lee, S. Pullen, M. Luo, A. Ene, D. Qiu, G. Zhang, and P. Enge, "Ionospheric threat parameterization for local area global-positioning-system-based aircraft landing system," Journal of Aircraft, Vol. 47, No. 4, pp. 1141-1151, 2010. https://doi.org/10.2514/1.46719
  2. P. Misra and P. Enge, Global Positioning System: signals, measurements, and performance, Lincoln, MA: Ganga-Jamuna Press, 2006.
  3. S. Jung and J. Lee, "Long term ionospheric anomaly monitoring for ground based augmentation systems," Radio Science, Vol. 47, RS4006, 2012.
  4. J. A. Klobuchar, "Ionospheric time-Delay algorithm for single-frequency GPS users," IEEE Transactions Aerospace and Electronic Systems, Vol. AES-23, No. 3, pp. 325-331, 1987. https://doi.org/10.1109/TAES.1987.310829
  5. W. A. Feess, and S. G. Stephens, "Evaluation of GPS ionospheric time-delay model," IEEE Transactions on Aerospace and Electronic Systems, Vol. AES-23, No. 3, pp. 332-338, 1987.. https://doi.org/10.1109/TAES.1987.310830
  6. M. Hernandez-Pajares, J. Juan, J. Sanz, R. Orus, A. Garcia-Rigo, J. Feltens, A. Komjathy, S. Schaer and A. Krankowski, "The IGS VTEC maps: a reliable source of ionospheric information since 1998," Journal of Geodesy, Vol. 83, No. 3-4, pp. 263-275, 2009. https://doi.org/10.1007/s00190-008-0266-1
  7. G. Ma and T. Maruyama, "Derivation of TEC and estimation of instrumental biases from GEONET in Japan," Annales Geophysicae, Vol. 21, No. 10, pp. 2083-2093, 2003. https://doi.org/10.5194/angeo-21-2083-2003
  8. J. Lee, S. Pullen, S. Datta-Barua, and P. Enge, "Assessment of ionosphere spatial decorrelation for GPS-based aircraft landing systems," Journal of Aircraft, Vol. 44, No. 5, pp. 1662-1669, 2006. https://doi.org/10.2514/1.28199
  9. M. Menvielle and A. Berthelier, "The K-Derived Planetary Indices: Description and Availability," Reviews of Geophysics, Vol. 29, No. 3, pp. 415-432, 1991. https://doi.org/10.1029/91RG00994
  10. M. Sugiura and T. Kamei, "Equatorial Dst Index 1957-1986," International Association of Geomagnetism and Aeronomy, Vol. 40, pp. 7-14, 1991.
  11. B. B. Poppe, "New scales help public, technicians understand space weather," Transactions of the American Geophysical Union, Vol. 81, No. 29, pp. 322, 328, 2000. https://doi.org/10.1029/00EO00247
  12. X. Pi, A. Mannucci, U. Lindqwister, and C. Ho, "Monitoring of global ionospheric irregularities using the worldwide GPS network," Geophysical Research Letters, Vol. 24, No. 18, pp. 2283-2286, 1997. https://doi.org/10.1029/97GL02273
  13. G. Ma and T. Maruyama, "A super bubble detected by dense GPS network at East Asian longitude," Geophysical Research Letters, Vol. 33, L21103, 2006. https://doi.org/10.1029/2006GL027512
  14. M. Yoon and J. Lee, "Medium-scale traveling ionospheric disturbances in the Korean region on 10 November 2004: potential impact on GPS-based navigation systems," Space Weather, Vol. 12, pp. 173-186, 2014. https://doi.org/10.1002/2013SW001002
  15. M. Kim, Y. Choi, H. Jun, and J. Lee, "GBAS ionospheric threat model assessment for category I operation in the Korean region," GPS solutions, Vol. 19, No. 3, pp. 443-456, 2014 https://doi.org/10.1007/s10291-014-0404-6