DOI QR코드

DOI QR Code

Development of Probability-Based Assessment Index for Docking Process Assessment

무인잠수정의 도킹 과정 평가를 위한 확률 기반 평가지표 개발

  • Chon, Seung-jae (Department of Control and Instrumentation Engineering, Graduate School, Korea Maritime and Ocean University (KMOU)) ;
  • Kim, Joon-young (Department of Ocean Advanced Materials Convergence Engineering, KMOU) ;
  • Choi, Joong-lak (Research Institute of Industrial Technology, KMOU) ;
  • Jeong, Seong-hoon (Research Institute of Industrial Technology, KMOU) ;
  • Kim, Jong-hwa (Division of Control and Automation Engineering, KMOU)
  • 천승재 (한국해양대학교 대학원 제어계측공학과) ;
  • 김준영 (한국해양대학교 해양신소재융합공학과) ;
  • 최중락 (한국해양대학교 산업기술연구소) ;
  • 정성훈 (한국해양대학교 산업기술연구소) ;
  • 김종화 (한국해양대학교 제어자동화공학부)
  • Received : 2021.04.15
  • Accepted : 2021.06.28
  • Published : 2021.06.30

Abstract

This paper proposes an assessment method using probability-based index for safe and successful underwater docking of autonomous underwater vehicles(AUVs) to the docking stations(DSs). The proposed method assesses the probability of docking according to the degree to which the state of the AUV is consistent with the state criteria for docking. The assessment is performed within a specific area considering the kinematic constraints and docking plans of the AUV. The assessment process is defining probability density function, calculating probabilities for reaching the docking station according to the difference to position and heading criteria, and computing the probability-based index in real-time. We verify the validity of the proposed method through analyzing the data acquired on operation test.

본 논문은 무인잠수정을 도킹스테이션에 성공적으로 안전하게 도킹시키기 위해 확률 기반 평가지표를 설계하여 수중 도킹 과정을 평가하는 방법을 제안한다. 제안하는 방법은 무인잠수정 상태와 수중 도킹을 위한 상태 기준의 일치 정도에 따른 도킹 성공 가능성을 확률로써 평가하는 방법이다. 평가는 무인잠수정의 기구학적 구속조건과 도킹 계획을 고려해 정의된 영역 내부에서 수행한다. 평가 과정은 확률밀도함수의 정의, 위치와 방향각 기준과의 차이에 따른 도킹스테이션 도달확률 계산, 확률지표의 산출 순서이며, 이를 통해 실시간으로 수중 도킹 과정을 평가한다. 수조실험을 통해 획득한 무인잠수정 데이터를 분석하여 제안하는 평가지표의 유효성을 검토하였다.

Keywords

Acknowledgement

이 연구는 산업통상자원부와 방위사업청의 재원으로 민군협력진흥원 및 국방과학기술원의 지원을 받아 수행된 연구임(민군겸용기술개발사업 다중센서를 이용한 무인잠수정의 도킹기술 개발, 17-CM-RB-16).

References

  1. D. Li, P. Wang, and L. Du, "Path planning technologies for autonomous underwater vehicles-a review," IEEE Access, Vol. 7, pp. 9745-9768, Jan. 2019. https://doi.org/10.1109/ACCESS.2018.2888617
  2. P. Chen, Y. Li, Y. Su, X. Chen, and Y. Jiang, "Review of AUV underwater terrain matching navigation," The Journal of Navigation, Vol. 68, No. 6, pp. 1155-1172, Nov. 2015. https://doi.org/10.1017/S0373463315000429
  3. T. Kan, R. Mai, P. P. Mercier, and C. C. Mi, "Design and analysis of a three-phase wireless charging system for lightweight autonomous underwater vehicles," IEEE Trans. Power Electron., Vol. 33, No. 8, pp. 6622-6632, Aug. 2018. https://doi.org/10.1109/TPEL.2017.2757015
  4. K. Teo, B. Goh, and O. K. Chai, "Fuzzy docking guidance using augmented navigation system on an AUV," IEEE Journal of Oceanic Engineering, Vol. 40, No. 2, Apr. 2015.
  5. J. H. Woo and N. W. Kim, "Design of guidance law for docking of unmanned surface vehicle," Journal of Ocean Engineering and Technology, Vol. 30, No. 3, pp. 208-213, Jun. 2016. https://doi.org/10.5574/KSOE.2016.30.3.208
  6. D. H. Choi, B. H. Jun, P. M. Lee, S. H. Kim, and G. N. Lim, "Study on the docking algorithm for underwater-docking of an AUV using visual guidance device," Journal of Ocean Engineering and Technology, Vol. 21, No. 3, pp. 33-39, Jun. 2007.
  7. G. H. Lee and J. H. Kim, "Docking system for unmanned underwater vehicle using reduced signal strength indicator," Journal of Institute of Control, Robotics and Systems, Vol. 18, No. 9, pp. 830-836, Sep. 2012. https://doi.org/10.5302/J.ICROS.2012.18.9.830
  8. M. F. Yahya and M. R. Arshad, "Position-based visual servoing for underwater docking of an autonomous underwater vehicle," in 2016 IEEE 6th International Conference on Underwater System Technology: Theory & Applications, pp. 121-126, 2016.
  9. G. H. Kim, J. H. Lee, P. Y. Lee, H. S. Kim, and H. S. Lee, "A study on docking guidance navigation algorithm of AUV by combining inertial navigation sensor and docking guidance sensor," Journal of Institute of Control, Robotics and Systems, Vol. 25, No. 7, pp. 647-656, Jul. 2019. https://doi.org/10.5302/J.ICROS.2019.19.0089
  10. T. S. Yoo, M. H. Kim, S. I. Yoon, and D. J. Kim, "Design of tightly coupled INS/DVL/RPM integrated navigation system," Journal of Ocean Engineering and Technology, Vol. 33, No. 5, pp. 470-478, Oct. 2019. https://doi.org/10.26748/KSOE.2019.085
  11. R. S. McEwen, B. W. Hobson, L. McBride, and J. G. Bellingham, "Docking control system for a 54-cm-diameter (21-in) AUV," IEEE Journal of Oceanic Engineering, Vol. 33, No. 4, pp. 550-562, Oct. 2008. https://doi.org/10.1109/JOE.2008.2005348
  12. A. Sans-Muntadas, K. Y. Pettersen, E. Brekke, and V. F. Henriksen, "A hybrid approach to underwater docking of AUVs with cross-current," in OCEANS 2016 MTS/IEEE Monterey, pp. 1-7, 2016.
  13. J. W. Park, J. W. Kim, "Autonomous docking of an unmanned surface vehicle based on reachability analysis," in 2020 20th International Conference on Control, Automation and Systems, pp. 962-966, 2020.
  14. A. Sans-Muntadas, E. F. Brekke, O. Hegrenaes, and K. Y. Pettersen, "Navigation and probability assessment for successful AUV docking using USBL," IFAC-PapersOnLine, Vol. 48, No. 16, pp. 204-209, 2015. https://doi.org/10.1016/j.ifacol.2015.10.281
  15. S. J. Chon, J. N. Sur, and S. H. Jeong, "Docking assessment algorithm for AUVs with uncertainties," Journal of Advanced Navigation Technology, Vol, 23, No. 5, pp. 352-360, Oct. 2019.