DOI QR코드

DOI QR Code

Effect of Supplementary Nitrogen Fertilization Application Time according to Regrowth Date on Growth Characteristics, Feed Value, and Productivity of Italian Ryegrass

생육 개시 기준 질소비료 추비 시기가 이탈리안 라이그라스의 생육특성, 사료가치, 생산성에 미치는 영향

  • Received : 2021.06.12
  • Accepted : 2021.06.23
  • Published : 2021.06.30

Abstract

This study was carried out to study the effect of supplementary nitrogen fertilization application time according to regrowth date on growth date on growth characteristics, feed value, and productivity of Italian ryegrass (Lolium multiflorum Lam.; IRG) from 2019 to 2021 in Cheonan region. In order to determine the regrowth time, IRG was cut from experimental plots 3cm above soil level and the time when 1cm grew was judged as the regrowth time. The regrowth dates were February 15th and February 12th in 2020 and 2021 respectively. The experimental design was a randomized block design with three replications. The treatments were no fertilizer, immediately after the regrowth period, after 10 days of the regrowth period, and after 25 days of the regrowth period. Dry matter yield of IRG was significantly influenced by the supplementary N-fertilization application time. Dry matter yield was reduced for the delayed application time. The dry matter yield of immediately after the regrowth period was approximately 34.8 % higher than that no fertilizer application. In delaying the supplementary N-fertilization application time resulted in increased crude protein content. However, no significant statistical difference was neutral detergent fiber and acid detergent fiber(p>0.05). After wintering, productivity of IRG reduced for the delayed application time. Therefore, it is essential to application N-fertilizer immediately after the regrowth period for high productivity of IRG.

본 연구는 IRG의 재생시기 판별과 추비시기를 제시하기 위하여 2019년부터 2021년까지 천안지역에서 수행되었다. 이탈리안 라이그라스(IRG) 재생 시기를 판단하기 위하여 지상부로부터 3 cm 부위를 예취하고 1 cm가 재생되는 시점을 재생시기로 판단하였다. 재생시기는 2020년과 2021년 각각 2월 15일 2월 12일로 나타났다. 시험처리는 4처리로 무비구, 재생기 추비 시용구(IGP), 재생기 기준 10일 이후 추비 시용구(10GP), 재생기 기준 25일 이후 추비 시용구로 하였다. 재생기에서 2월 평균온도가 2020년보다 2021년에서 더 낮아 IRG의 재생 시기가 3일 더 늦었다. 추비시기에 따른 IRG의 평균초장은 IGP 처리구와 10DGP 처리구에서 가장 크게 나타났으나 유의적인 차이는 없었다(p>0.05). 평균 건물생산량은 추비시기가 늦어질수록 건물생산량은 점차적으로 감소 하였으며, 추비를 하지 않은 무비구는 IGP 대비 65.2 % 수준이었다. 평균 CP 함량은 무비구에서 가장 낮았고 추비시기가 늦어질수록 높아지는 경향이었다. 그러나 평균 NDF 함량 및 평균 ADF 함량은 처리간에 유의적인 차이는 나타나지 않았다(p>0.05). 월동 후 이탈리안 라이그라스의 재생기에 추비를 하는 것이 건물생산량이 높았으며, 추비시기가 늦어짐에 따라 건물생산량이 감소하는 경향을 나타내었다. 추비시기에 따라 이탈리안 라이그라스의 생산량이 영향을 받는 것을 확인 할 수 있었으며, 기후변화에 대응하는 추비시기 설정에 대한 연구가 필요할 것으로 사료된다.

Keywords

Acknowledgement

본 논문은 농촌진흥청 연구사업(기후변화에 따른 목초·사료작물의 생산성 실태조사 및 영향·취약성평가(1단계), PJ015079012021)과 2021년도 농촌진흥청 국립축산과학원 전문연구원 과정 지원사업에 의해 이루어진 것임.

References

  1. AAAS. 1884. American association for the advancement of science. Jean-Baptiste-Andre Dumas. Science. (72):750-752.
  2. Abdalla, M., Richards, M., Pogson, M., Smith, J.U. and Smith, P. 2016. Estimating the effect of nitrogen fertilizer on the greenhouse gas balance of soils in Wales under current and future climate. Regional Environmental Change. 16(8):2357-2368. doi:10.1007/s10113-016-0958-7
  3. Ahn, I., Lee, I.A., Yun, S.K. and Kim, K.Y. 2016. Influence of liquid pig manure application on production increase of winter annual forage in paddy filed removed straw in central area from 2015 to 2016. Proceedings of 2016 Annual Congress of Korean Journal of Environmental Agriculture. pp. 88-89.
  4. AOAC. 1990. Official methods of analysis (15th ed.). Association of Official Analytical Chemists. Washington D.C. doi:10.1007/BF02670789
  5. Blomback, K. and Eckersten, H. 1997. Simulated growth and nitrogen dynamics of a perennial rye grass. Agricultural and Forest meteorology. 88(1-4):37-45. doi:10.1016/S0168-1923(97)00053-1
  6. Cho, K.M., Lee, S.B., Back, N.H., Yang, C.H., Shin, P., Lee, K.B., Park, K.H. and Baek, S.H. 2013. The effect of liquid pig manure on yield of several forage crops and soil chemical properties. Korean Journal of Environmental Agriculture. 32(4):323-331. doi:10.5338/KJEA.2013.32.4.323
  7. Choi, G.J., Choi, K.C., Hwang, T.Y., Lee, K.W., Kim, J.H., Kim, W.H., Lee, E.J., Sung, K.I. and Jung, J.S. 2018. Effect of difference in cold-tolerance of variety on forage productivity of italian ryegrass in middle regions of Korea. Journal of the Korean Society of Grassland and Forage Science. 38(4):210-216. doi:10.5333/KGFS.2018.38.4.210
  8. Davies, D. and Morgan, T. 1988. Variation in spring temperatures, grass production and response to nitrogen over twenty years in the uplands. Grass and Forage Science. 43(2):159-166. doi:10.1111/j.1365-2494.1988.tb01883.x
  9. Dreccer, M., Schapendonk, A., Slafer, G. and Rabbinge, R. 2000. Comparative response of wheat and oilseed rape to nitrogen supply: Absorption and utilisation efficiency of radiation and nitrogen during the reproductive stages determining yield. Plant and soil. 220(1):189-205. doi:10.1023/A:1004757124939
  10. Goering, H.K. and Van Soest, P.J. 1970. Forage fiber analyses (apparatus, reagents, procedures, and some applications). US Agricultural Research Service.
  11. Greenwood, D., Lemaire, G., Gosse, G., Cruz, P., Draycott, A. and Neeteson, J. 1990. Decline in percentage N of C3 and C4 crops with increasing plant mass. Annals of Botany. 66(4):425-436. doi:10.1093/oxfordjournals.aob.a088044
  12. Han, Y.C., Lee, J.K., Park, M.S., Seo, S. and Lee, B.S. 1987. Effect of final cutting time and cutting height on the winter survival, regrowth and early spring yield of orchardgrass (Dactylis Glomerate L.) dominated pasture. Journal of the Korean Society of G rassland and Forage Science. 7(1):18-24.
  13. IPCC. 2006. IPCC guidelines for internal greenhouse gas inventories.
  14. Jagtenberg, W. 1970. Predicting the best time to apply nitrogen to grassland in spring. Grass and Forage Science. 25(4):266-271. doi:10.1111/j.1365-2494.1970.tb01202.x
  15. Kim, C.H. and Lee, D.W. 1981. Research report: Establishment of management practices in barley and wheat. RDA. 1:181-194.
  16. Kim, K.H. 2020. Research report: Breeding for new variety wheat and barley and expending supply. RDA. 1.
  17. Kim, K.Y., Choi, G.J., Lee, S.H., Hwang, T.Y., Lee, G.W., Ji, H.C. and Park, S.M. 2016. Growth characteristics and dry matter yields of domestic and foreign Italian ryegrass (Lolium multiflorum Lam.) cultivars in Cheonan region. Journal of the Korean Society of Grassland and Forage Science. 36(4):280-286. doi:10.5333/KGFS.2016.36.4.280
  18. Ko, K.H., Kim, J.K. and Kim, J.D. 2015. Evaluation of agronomic characteristics and forage production of domestic and foreign Italian ryegrass cultivar in Korea. Journal of the Korean Society of Grassland and Forage Science. 35(4):297-302. doi:10.5333/KGFS.2015.35.4.297
  19. Lee, D.B., Sung, J.K., Lee, Y.J., Lee, S.B., Song, Y.S. and Kim, Y.B. 2017. Standards fertilization by crop (Republic of Korea). RDA.
  20. Lee, H.J., Byeon, J.E., Ryoo, J.W. and Hwang, S.G. 2020. Comparison of growth characteristics and forage productivity of italian ryegrass in Yeongseo and Yeongdong of Gangwon Province. Journal of the Korean Society of Grassland and Forage Science. 40(4):251-258. doi:10.5333/KGFS.2020.40.4.251
  21. MAFRA. 2020. Forage supply and demand statistics. Ministry of Agriculture Food and Rural Affairs.
  22. MAFRA. 2021. Forage supply and demand statistics. Ministry of Agriculture Food and Rural Affairs.
  23. Nielsen, K. and Cunningham, R. 1964. The effects of soil temperature and form and level of nitrogen on growth and chemical composition of Italian ryegrass. Soil Science Society of America Journal. 28(2):213-218. doi:10.2136/sssaj1964.03615995002800020026x
  24. OECD. 2017. The nitrogen cycle and policy-towards coherent solutions, environment policy committee. pp. 25-30.
  25. Ortiz-Monasterior, J.I., Sayre, K.D., Rajaram, S. and McMahon, M. 1997. Genetic progress in wheat yield and nitrogen use efficiency under four nitrogen rates. Crop Science. 37(3):898-904. doi:10.2135/cropsci1997.0011183X003700030033x
  26. Salette, J., Lemaire, G., Robichet, J. and Huguet, L. 1984. Concentrations of soluble nitrogen in an autumn-sown Italian rye grass crop: Evolution during spring growth. Fourrages, France.
  27. Seo, S., Han, Y.C. and Park, M.S. 1989. Studies on the grassland management in late-autumn and early-spring IV. Effect of application levels of NPK fertilizer in late-autumn on witer survival, early spring growth and yield of grasses. Journal of the Korean Society of Grassland and Forage Science. 9(2):82-87.
  28. Seo, S., Park, M.S., Lee, J.K. and Han, Y.C. 1988. Studies on the grassland management in late-autumn and early-spring II. Effect of fertilization application time in spring on growth, crude protein content and yield of grasses for grazing. Journal of the Korean Society of Grassland and Forage Science. 8(3):141-146.
  29. Stocker, T., Qin, D., Plattner, G., Tignor, M., Allen, S., Boschung, J., Nauels, A., Xia, Y., Bex, V. and Midgley, P. 2013. IPCC, 2013: Summary for policymakers in climate change 2013: The physical science basis, contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press Cambridge Core, UKNY NY USA.
  30. Whitehead, D.C. 1995. Grassland nitrogen. CAB International.
  31. Wilkinson, J.M. 1984. Milk and meat from grass. Granada Publishing.
  32. Yang, H.Y., Kim, J.G., Oh, B.W. and Seo, I.H. 2020. Improvement of nutrient balance using feed crops for regional nutrient management. Protected Horticulture and Plant Factory. 29(1):89-95. doi:10.12791/KSBEC.2020.29.1.89