DOI QR코드

DOI QR Code

The Effects of Feeding Order of Roughages and Concentrates on in vitro Rumen Fermentation, Total Gas and Methane Production in Hanwoo

조사료와 농후사료의 급여 순서가 In vitro 반추위 발효성상, 총 가스 발생량과 메탄 발생량에 미치는 영향

  • Lee, Yookyung (Animal Nutrition & Physiology Team, National Institute of Animal Science, RDA) ;
  • Lee, Sungsill (Division of Applied Life Science(BK21Plus), Gyeongsang National University) ;
  • Seong, Pilnam (Animal Nutrition & Physiology Team, National Institute of Animal Science, RDA) ;
  • Lee, Seul (Animal Nutrition & Physiology Team, National Institute of Animal Science, RDA) ;
  • Baek, Youlchang (Animal Nutrition & Physiology Team, National Institute of Animal Science, RDA) ;
  • Kim, Kihyun (Animal Welfare Research Team, National Institute of Animal Science, RDA) ;
  • Lee, Sungdae ;
  • Chun, Julan (Animal Welfare Research Team, National Institute of Animal Science, RDA) ;
  • Ji, Sangyun (Division of Applied Life Science(BK21Plus), Gyeongsang National University) ;
  • Kim, Jungeun (Animal Nutrition & Physiology Team, National Institute of Animal Science, RDA)
  • 이유경 (농촌진흥청 국립축산과학원 축산생명환경부 영양생리팀) ;
  • 이성실 (경상대학교 응용생명과학부(BK21Plus)) ;
  • 성필남 (농촌진흥청 국립축산과학원 축산생명환경부 영양생리팀) ;
  • 이슬 (농촌진흥청 국립축산과학원 축산생명환경부 영양생리팀) ;
  • 백열창 (농촌진흥청 국립축산과학원 축산생명환경부 영양생리팀) ;
  • 김기현 (농촌진흥청 국립축산과학원 축산생명환경부 동물복지팀) ;
  • 이성대 (경상대학교 응용생명과학부(BK21Plus)) ;
  • 천주란 (농촌진흥청 국립축산과학원 축산생명환경부 동물복지팀) ;
  • 지상윤 (경상대학교 응용생명과학부(BK21Plus)) ;
  • 김정은 (농촌진흥청 국립축산과학원 축산생명환경부 영양생리팀)
  • Received : 2021.04.23
  • Accepted : 2021.06.18
  • Published : 2021.06.30

Abstract

The objective of this study was to evaluate effects of feeding methods on in vitro ruminal fermentation, total gas and methane production in Hanwoo steers. Six Hanwoo steers fitted with rumen cannula (430 ± 21 kg of body weight) were randomly assigned to one of three feeding systems: 1) feeding forage 1 hour after concentrate, 2) feeding concentrate 1 hour after forage, 3) feeding mixed ration. Rumen fluid sampled from each animals was incubated 24 hours with maize or timothy substrates in in vitro. Ruminal pH was increased in feeding method 2 or maize substrate than that of other methods or timothy substrate (P < 0.001). The production of total volatile fatty acid, acetate, propionate, butyrate, and valerate were increased when steers fed diets using feeding method 1 or rumen fluid was incubated with maize substrate (P < 0.001). Increased production of total gas and methane was observed in feeding method 1 and maize substrate compared to those of other methods or timothy substrate (P < 0.001). Due to the inconsistent results between ruminal fermentation and gas production in this study, further research is required to estimate effects of feeding method on enteric fermentation and gas production in in vivo.

본 연구는 국내 고유종인 한우에서 1) 농후사료 급여 후 조사료 급여, 2) 조사료 급여 후 농후사료 급여, 3) TMR 급여의 총 세 가지 형태의 사료급여가 반추위 발효성상, 총 가스 및 메탄 발생량에 미치는 영향을 in vitro로 평가하기 위해 수행되었다. 사료 급여 형태에 따라 반추위 환경이 변화할 것으로 가설을 세우고, 옥수수 (M)와 티모시 (T)를 기질로 하여 반추위액의 24시간 in vitro 배양을 실시하였다. 따라서 시험 처리구는 총 6개로 구성되었다: M1, M2, M3, T1, T2, T3. 반추위 pH는 사료 급여방식 2에서 다른 처리구보다 높았고 (P < 0.001), 티모시 기질에서 옥수수 기질보다 높았다 (P < 0.001). 휘발성 지방산 (VFA; volatile fatty acid) 조사항목들 (Total VFA, acetate, propionate, butyrate, valerate)은 사료 급여방식 1에서 가장 높았고 급여방식 2에서 가장 낮았으며 (P < 0.001), 옥수수 기질에서 더 많이 생산되었다 (P < 0.001). 반추위액 내 acetate:propionate 비율은 사료 급여방식에 따른 효과는 없었으나 (P = 0.116), 티모시 기질이 옥수수 기질보다 더 높은 값을 나타냈다 (P < 0.001). 암모니아태 질소 (NH3-N)는 사료 급여방식 1에서 다른 처리구보다 높았으며(P < 0.001), 티모시 기질에서 높은 수치를 보였다 (P < 0.001). 총 가스 및 메탄가스 발생량은 사료 급여방식 1에서 가장 높았고(P < 0.001), 옥수수 기질에서 더 많이 생산되었다 (P < 0.001). 메탄은 이산화탄소의 20배 이상의 지구온난화효과를 갖는 것으로 알려져 있고, 반추가축이 섭취한 에너지의 손실로 작용하고 있어 장내발효 메탄 발생량을 저감하는 것은 매우 중요한 과제라 할 수 있다. 반추가축에서 사료급여 방식에 따른 메탄 발생량 차이에 대한 결론을 얻기 위해서는 보다 다각적인 형태의 연구가 필요할 것으로 사료된다.

Keywords

Acknowledgement

본 성과물 (논문)은 농촌진흥청 연구사업 (세부과제명: 한우의 메탄 생성량 저감을 위한 반추위 최적 발효조건 구명, 세부과제번호: PJ01266402)의 지원에 의해 이루어진 것임

References

  1. Agle, M., Hristov, A.N., Zaman, S., Schneider, C., Ndegwa, P.M. and Vaddella, V.K. 2010. Effect of dietary concentrate on rumen fermentation, digestibility, and nitrogen losses in dairy cows. Journal of Dairy Science. 93:4211-4222. https://doi.org/10.3168/jds.2009-2977
  2. Archimede, H., Eugene, M., Marie Magdeleine, C., Bovala, M., Martin, C., Morgavi, D.P., Lecomte, P. and Doreau, M. 2011. Comparison of methane production between C3 and C4 grasses and legumes. Animal Feed Science and Technology. 166-167:59-64. https://doi.org/10.1016/j.anifeedsci.2011.04.003
  3. Bargo, F., Muller, L.D., Varga, G.A., Delahoy, J.E. and Cassidy, T.W. 2002. Ruminal digestion and fermentation of high-producing dairy cows with three different feeding systems combining pasture and total mixed rations. Journal of Dairy Science. 85:2964-2973. https://doi.org/10.3168/jds.S0022-0302(02)74382-8
  4. Bayat, A.R., Tapio, I., Vilkki, J., Shingfield, K.J. and Leskinen, H. 2018. Plant oil supplements reduce methane emissions and improve milk fatty acid composition in dairy cows fed grass silage-based diets without affecting milk yield. Journal of Dairy Science. 101:1136-1151. https://doi.org/10.3168/jds.2017-13545
  5. Beauchemin, K.A. and McGinn, S.M. 2006. Methane emissions from beef cattle: Effects of rumaric acid, essential oil, and canola oil. Journal of Animal Science. 84:1489-1496. https://doi.org/10.2527/2006.8461489x
  6. Beuvink, J.M.W., Spoelstra, S.F. and Hogendorp, R.J. 1992. An automated method for measuring time-course of gas production of feedstuffs incubated with buffered rumen fluid. Netherlands Journal of Agricultural Science. 40(4):401-407. https://doi.org/10.18174/njas.v40i4.16501
  7. Bharanidharan, R., Arokiyaraj, S., Kim, E.B., Lee, C.H., Woo, Y.W., Na, Y., Kim, D. and Kim, K.H. 2018. Ruminal methane emissions, metabolic, and microbial profile of Holstein steers fed forage and concentrate, separately or as a total mixed ration. PLoS ONE. 13(8):e0202446. https://doi.org/10.1371/journal.pone.0202446
  8. Bharanidharan, R., Woo, Y.W., Lee, C.H., Na, Y., Kim, D.H. and Kim, K.H. 2018. Effect of feeding method on methane production per dry matter intake in Holstein steers. Journal of the Korean Society of Grassland and Forage Science. 38(4):260-265. https://doi.org/10.5333/KGFS.2018.38.4.260
  9. Boadi, D.A. and Wittenberg, K.M. 2002. Methane production from dairy and beef heifers fed forages differing in nutrient density using the sulphur hexafluoride (SF6) tracer gas technique. Canadian Journal of Animal Science. 82:201-206. https://doi.org/10.4141/A01-017
  10. Chaney, A.L. and Marbach, E.P. 1962. Modified reagents for determination of urea and ammonia. Clinical Chemistry. 8:130. https://doi.org/10.1093/clinchem/8.2.130
  11. Erwin, E., Marco, G. and Emery, E. 1961. Volatile fatty acid analyses of blood and rumen fluid by gas chromatography. Journal of Dairy Science. 44(9):1768-1771. https://doi.org/10.3168/jds.s0022-0302(61)89956-6
  12. Garcia, F., Colombatto, D., Alejandra Brunetti, M., Jose Martinez, M., Valeria Moreno, M., Carolina Scorcione Turcato, M., Lucini, E., Frossasco, G. and Martinez Ferrer, J. 2020. The reduction of methane production in the in vitro ruminal fermentation of different substrates is linked with the chemical composition of the essential oil. Animals. 10(5):786. https://doi.org/10.3390/ani10050786
  13. Granja-Salcedo, Y.T., Fernandes, R.M., Araujo, R.C., Kishi, L.T., Berchielli, T.T., Resende, F.D., Berndt, A. and Siqueira, G.R. 2019. Long-term encapsulated nitrate supplementation modulates rumen microbial diversity and rumen fermentation to reduce methane emission in grazing steers. Frontiers in Microbiology. 10:614. https://doi.org/10.3389/fmicb.2019.00614
  14. Grobner, M.A., Johnson, D.E., Goodall, S.R. and Benz, D.A. 1982. Sarsaponin effects on in vitro continuous flow fermentation of a high grain diet. Journal of Animal Science. 33:64 -66. https://doi.org/10.2527/jas1971.33164x
  15. Holter, J.B., Urban, W.E., Hayes, H.H. and Davis, J.A. 1977. Utilization of diet components fed blended or separately to lactating cows. Journal of Dairy Science. 60:1288-1293. https://doi.org/10.3168/jds.s0022-0302(77)84024-1
  16. Hook, S.E., Steele, M.A., Northwood, K.S., Wright, A.G. and McBride, B.W. 2011. Impact of high-concentrate feeding and low ruminal pH on methanogens and protozoa in the rumen of dairy cows. Microbial Ecology. 62:94-105. https://doi.org/10.1007/s00248-011-9881-0
  17. Hristov, A.N., Ropp, J.K., Grandeen, K.L., Abedi, S., Etter, R.P., Melgar, A. and Foley, A.E. 2005. Effect of carbohydrate source on ammonia utilization in lactating dairy cows. Journal of Animal Science. 83:408-421. https://doi.org/10.2527/2005.832408x
  18. Hunerberg, M., McGinn, S.M., Beauchemin, K.A., Entz, T., Okine, E.K., Harstad, O.M. and McAllister, T.A. 2015. Impact of ruminal pH on enteric methane emissions. Journal of Animal Science. 93(4):1760-6. https://doi.org/10.2527/jas.2014-8469
  19. IPCC. 2014. Intergovernmental panel on climate change (IPCC) climate change 2014: Impacts, adaptation, and vulnerability. Cambridge University Press, New York.
  20. Irmgard, I. 1996. The rumen and hindgut as source of ruminant methanogenesis. Environmental Monitoring Assessment. 42:57-72. https://doi.org/10.1007/BF00394042
  21. Johnson, K.A. and Johnson, D.E. 1995. Methane emissions from cattle. Journal of Animal Science. 73:2483-2492. https://doi.org/10.2527/1995.7382483x
  22. Kim, K.H., Kim, K.S., Lee, S.C., Oh, Y.G., Chung, C.S. and Kim, K.J. 2003. Effects of total mixed rations on ruminal characteristics, digestibility and beef production of Hanwoo steers. Journal of Animal Science and Technology. 45(3):387-396. https://doi.org/10.5187/JAST.2003.45.3.387
  23. Lana, R.P., Russell, J.B. and Van Amburgh, M.E. 1998. The role of pH in regulating ruminal methane and ammonia production. Journal of Animal Science. 76:2190-2196. https://doi.org/10.2527/1998.7682190x
  24. Lascano, G.J. and Heinrichs, A.J. 2009. Rumen fermentation pattern of dairy heifers fed restricted amounts of low, medium, and high concentrate diets without and with yeast culture. Livestock Science. 124:48-57. https://doi.org/10.1016/j.livsci.2008.12.007
  25. Lee, Y., Bharanidharana, R., Park, J., Jang, S.S., Yeo, J.M., Kim, W.Y. and Kim, K.H. 2016. Comparison of methane production of Holstein steers fed forage and concentrates separately or as a TMR. Journal of the Korean Society of Grassland and Forage Science. 36(2):104-108. https://doi.org/10.5333/KGFS.2016.36.2.104
  26. Li, D.Y., Lee, S.S., Choi, N.J., Lee, S.Y., Sung, H.G., Ko, J.Y., Yun, S.G. and Ha, J.K. 2003. Effects of feeding system on rumen fermentation parameters and nutrient digestibility in Holstein steers. Asian-Australasian Journal of Animal Science. 16(10):1482-1486. https://doi.org/10.5713/ajas.2003.1482
  27. Liu, Y.F., Sun, F.F., Wan, F.C., Zhao, H.B., Liu, X.M., You, W., Cheng, H.J., Liu, G.F., Tan, X.W. and Song, E.L. 2016. Effects of three feeding systems on production performance, rumen fermentation and rumen digesta particle structure of beef cattle. Asian-Australasian Journal of Animal Science. 29(5):659-665. https://doi.org/10.5713/ajas.15.0445
  28. Pinares-Patino, C.S., Baumont, R. and Martin, C. 2003. Methane emissions by Charolais cows grazing a monospecific pasture of timothy at four stages of maturity. Canadian Journal of Animal Science. 83(4):769-777. https://doi.org/10.4141/A03-034
  29. RDA. 2018. Korean feeding standards for Hanwoo.
  30. Roque, B.M., Salwen, J.K., Kinley, R. and Kebreab, E. 2019. Inclusion of Asparagopsis armata in lactating dairy cows' diet reduces enteric methane emission by over 50 percent. Journal of Cleaner Production. 234:132-138. https://doi.org/10.1016/j.jclepro.2019.06.193
  31. Sallam, S.M.A., Nasser, M.E.A., El-Waziry, A.M., Bueno, I.C.S. and Abdalla, A.L. 2007. Use of an in vitro rumen gas production technique to evaluate some ruminant feedstuffs. Journal of Applied Sciences Research. 3(1):34-41.
  32. Schroeder, G.F., Delahoy, J.E., Vidaurreta, I., Bargo, F., Gagliostro, G.A. and Muller, L.D. 2003. Milk fatty acid composition of cows fed a total mixed ration or pasture plus concentrates replacing corn with fat. Journal of Dairy Science. 86:3237-3248. https://doi.org/10.3168/jds.S0022-0302(03)73927-7
  33. Theodorou, M.K., Williams, B.A., Dhanoa, M.S., McAllan, A.B. and France, J. 1994. A simple gas production method using a pressure transducer to determine the fermentation kinetics of ruminant feeds. Animal Feed Science and Technology. 48(3-4):185-197. https://doi.org/10.1016/0377-8401(94)90171-6
  34. Van Kessel, J.A.S. and Russell, J.B. 1996. The effect of pH on ruminal methanogenesis. FEMS Microbiology Ecology. 20(4):205-210. https://doi.org/10.1111/j.1574-6941.1996.tb00319.x
  35. Van Zijderveld, S.M., Gerrits, W.J.J., Dijkstra, J., Newbold, J.R., Hulshof, R.B.A. and Perdok, H.B. 2011. Persistency of methane mitigation by dietary nitrate supplementation in dairy cows. Journal of Dairy Science. 94:4028-4038. https://doi.org/10.3168/jds.2011-4236
  36. Waghorn, G.C., Tavendale, M.H. and Woodfield, D.R. 2002. Methanogenesis from forages fed to sheep. Proceedings of the New Zealand Grassland Association. 64:167-171.
  37. Williams, S.R.O., Hannah, M.C., Jacobs, J.L., Wales, W.J. and Moate, P.J. 2019. Volatile fatty acids in ruminal fluid can be used to predict methane yield of dairy cows. Animals. 9(12):1006. https://doi.org/10.3390/ani9121006