Acknowledgement
이 연구는 기상청 국립기상과학원 「장기예측시스템 개발」 (KMA2018-00322)의 지원으로 수행되었습니다. 그리고, 본 시스템의 개발에 있어 자문을 주신 영국기상청 해들리 센터 소속의 Matthew Martine과 Daniel Lea 박사께 깊은 감사말씀 드립니다.
References
- Amante, C., and B. W. Eakins, 2009: ETOPO1 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis. NOAA Technical Memorandum NESDIS NGDC-24, 19 pp.
- Balmaseda, M., and D. Anderson, 2009: Impact of initialization strategies and observations on seasonal forecast skill. Geophys. Res. Lett., 36, L01701. https://doi.org/10.1029/2008GL035561
- Barnier, B., and Coauthors, 2006: Impact of partial steps and momentum advection schemes in a global ocean circulation model at eddy-permitting resolution. Ocean Dyn., 56, 534-567.
- Best, M. J., and Coauthors, 2011: The Joint UK Land Environment Simulator (JULES), model description - part 1: energy and water fluxes. Geosci. Model Dev., 4, 677-699, doi:10.5194/gmd-4-677-2011.
- Blanke, B., and P. Delecluse, 1993: Variability of the tropical Atlantic Ocean simulated by a general circulation model with two different mixed-layer physics. J. Phys. Oceanogr., 23, 1363-1388. https://doi.org/10.1175/1520-0485(1993)023<1363:VOTTAO>2.0.CO;2
- Blockley, E. W., and Coauthors, 2014: Recent development of the Met Office operational ocean forecasting system: an overview and assessment of the new Global FOAM forecasts. Geosci. Model Dev., 7, 2613-2638, doi:10.5194/gmd-7-2613-2014.
- Bonavita, M., P. Lean, and E. Holm, 2018: Nonlinear effects in 4D-Var. Nonlin. Processes Geophys., 25, 713-729, doi:10.5194/npg-25-713-2018.
- Bourdalle-Badie, R., and A. M. Treguier, 2006: A climatology of runoff for the global ocean-ice model ORCA025. Mercator-Ocean Rep. MOO-RP-425-365-MER, 8 pp.
- Brown, A., S. Milton, M. Cullen, B. Golding, J. Mitchell, and A. Shelly, 2012: Unified modeling and prediction of weather and climate: A 25-year journey. Bull. Amer. Meteor. Soc., 93, 1865-1877, doi:10.1175/BAMS-D-12-00018.1.
- Gaspar, P., Y. Gregoris, and J. M. Lefevre, 1990: A simple eddy kinetic energy model for simulations of the oceanic vertical mixing: Tests at station Papa and longterm upper ocean study site. J. Geophys. Res. Oceans, 95, 16179-16193. https://doi.org/10.1029/JC095iC09p16179
- Hackert, E., R. M. Kovach, A. Molod, G. Vernieres, A. Borovikov, J. Marshak, and Y. Chang, 2020: Satellite sea surface salinity observations impact on El Nino/Southern Oscillation predictions: Case studies from the NASA GEOS seasonal forecast system. J. Geophys. Res. Oceans, 125, e2019JC015788, doi:10.1029/2019JC015788.
- Haney, R. L., 1971: Surface thermal boundary condition for ocean circulation models. J. Phys. Oceanogr., 1, 241-248. https://doi.org/10.1175/1520-0485(1971)001<0241:STBCFO>2.0.CO;2
- Hunke, E. C., and W. H. Lipscomb, 2010: CICE: The Los Alamos sea ice model documentation and software user's manual, version 4.1. Los Alamos National Laboratory, LA-CC-06-012, 76 pp.
- Ingleby, N. B., and A. C. Lorenc, 1993: Bayesian quality control using multivariate normal distributions. Q. J. R. Meteorol. Soc., 119, 1195-1225. https://doi.org/10.1002/qj.49711951316
- GEBCO, 2003: Centenary Edition of the GEBCO Digital Atlas. General Bathymetric Chart of the Oceans, British Oceanographic Data Centre [Available online at https://www.bodc.ac.uk/projects/data_management/international/gebco/gebco_digital_atlas/].
- Kang, H.-S., K.-O. Boo, and C. H. Cho, 2011: Introduction to the KMA-Met office joint seasonal forecasting system and evaluation of its hindcast ensemble simulations. Proc., The 36th NOAA Annual Climate Diagnostics and Prediction Workshop, NOAA's National Weather Service, 78-82.
- Kim, D.-K., Y.-H. Kim, and C. Yoo, 2019: Predictability of Northern Hemisphere teleconnection patterns in GloSea5 hindcast experiments up to 6 weeks. Atmosphere, 29, 295-309, doi:10.14191/Atmos.2019.29.3.295 (in Korean with English abstract).
- Large, W. G., and S. Yeager, 2004: Diurnal to decadal global forcing for ocean and sea-ice models: The data sets and flux climatologies. NCAR Tech. Note NCAR/ TN-460+STR, 105 pp, doi:10.5065/D6KK98Q6.
- Lee, H., P.-H. Chang, K. R. Kang, H.-S. Kang, and Y. Kim, 2018: Assessment of ocean surface current forecasts from high resolution Global Seasonal Forecast System version 5. Ocean Polar Res., 40, 99-114, doi: 10.4217/OPR.2018.40.3.099 (in Korean with English abstract).
- Lee, S.-J., Y.-K. Hyun, S.-M. Lee, S.-O. Hwang, J. Lee, and K.-O. Boo, 2020: Prediction skill for East Asian summer monsoon indices in a KMA Global Seasonal Forecasting System (GloSea5). Atmosphere, 30, 293-309, doi:10.14191/Atmos.2020.30.3.293 (in Korean with English abstract).
- Lim, S.-M., Y.-K., Hyun, H.-S., Kang, and S.-W. Yeh, 2018: Prediction skill of East Asian precipitation and temperature associated with El Nino in GloSea5 hindcast data. Atmosphere, 28, 37-51, doi:10.14191/Atmos.2018.28.1.037 (in Korean with English abstract).
- MacLachlan, C., and Coauthors, 2015: Global seasonal forecast system version 5 (GloSea5): a high-resolution seasonal forecast system. Q. J. R. Meteorol. Soc., 141, 1072-1084, doi:10.1002/qj.2396.
- Madec, G., 2008: NEMO ocean engine. Note du Pole de modelisation de l'Institut Pierre-Simon Laplace 27, 300 pp.
- Megann, A., D. Storkey, Y. Aksenov, S. Alderson, D. Calvert, T. Graham, P. Hyder, J. Siddorn, and B. Sinha, 2014: GO5.0: The joint NERC-Met Office NEMO global ocean model for use in coupled and forced applications. Geosci. Model Dev., 7, 1069-1092, doi:10.5194/gmd-7-1069-2014.
- Rae, J. G. L., H. T. Hewitt, A. B. Keen, J. K. Ridley, A. E. West, C. M. Harris, E. C. Hunke, and D. N. Walters, 2015: Development of the global sea ice 6.0 CICE configuration for the met office global coupled model. Geosci. Model Dev., 8, 2221-2230, doi:10.5194/gmd8-2221-2015.
- Ricci, S., A. T. Weaver, J. Vialard, and P. Rogel, 2005: Incorporating state-dependent temperature-salinity constraints in the background error covariance of variational ocean data assimilation. Mon. Wea. Rev., 133, 317-338. https://doi.org/10.1175/MWR2872.1
- Semtner, Jr., A. J., 1976: A model for the thermodynamic growth of sea ice in numerical investigations of climate. J. Phys. Oceanogr., 6, 379-389. https://doi.org/10.1175/1520-0485(1976)006<0379:AMFTTG>2.0.CO;2
- Thorndike, A. S., D. A. Rothrock, G. A. Maykut, and R. Colony, 1975: The thickness distribution of sea ice. J. Geophys. Res. Oceans, 80, 4501-4513. https://doi.org/10.1029/JC080i033p04501
- Walters, D. N., and Coauthors, 2011: The Met Office Unified Model global atmosphere 3.0/3.1 and JULES global land 3.0/3.1 configurations. Geosci. Model Dev., 4, 919-941, doi:10.5194/gmd-4-919-2011.
- Waters, J., D. J. Lea, M. J. Martin, D. Storkey, and J. While, 2013: Describing the development of the new FOAM-NEMOVAR system in the global 1/4 degree configuration. Met Office Forecasting Research Tech. Rep. 578, 45 pp.
- Waters, J., D. J. Lea, M. J. Martin, I. Mirouze, A. Weaver, and J. While, 2015: Implementing a variational data assimilation system in an operational 1/4 degree global ocean model. Q. J. R. Meteorol. Soc., 141, 333-349, doi:10.1002/qj.2388.
- Weaver, A. T., J. Vialard, and D. L. T. Anderson, 2003: Three- and four-dimensional variational assimilation with a general circulation model of the tropical Pacific Ocean. Part I: Formulation, internal diagnostics, and consistency checks. Mon. Wea. Rev., 131, 1360-1378. https://doi.org/10.1175/1520-0493(2003)131<1360:TAFVAW>2.0.CO;2
- Weaver, A. T., C. Deltel, E. Machu, S. Ricci, and N. Daget, 2005: A multivariate balance operator for variational ocean data assimilation. Q. J. R. Meteorol. Soc., 131, 3605-3625. https://doi.org/10.1256/qj.05.119
- Zalesak, S. T., 1979: Fully multidimensional flux-corrected transport algorithms for fluids. J. Comput. Phys., 31, 335-362. https://doi.org/10.1016/0021-9991(79)90051-2