DOI QR코드

DOI QR Code

Calculation of future rainfall scenarios to consider the impact of climate change in Seoul City's hydraulic facility design standards

서울시 수리시설 설계기준의 기후변화 영향 고려를 위한 미래강우시나리오 산정

  • Yoon, Sun-Kwon (Department of Disasters Prevention Research, Seoul Institute of Technology) ;
  • Lee, Taesam (ERI, Department of Civil Engineering, Gyeongsang National University) ;
  • Seong, Kiyoung (ERI, Department of Civil Engineering, Gyeongsang National University) ;
  • Ahn, Yujin (ERI, Department of Civil Engineering, Gyeongsang National University)
  • 윤선권 (서울기술연구원 안전방재연구실) ;
  • 이태삼 (경상국립대학교 토목공학과) ;
  • 성기영 (경상국립대학교 토목공학과) ;
  • 안유진 (경상국립대학교 토목공학과)
  • Received : 2021.04.01
  • Accepted : 2021.05.11
  • Published : 2021.06.30

Abstract

In Seoul, it has been confirmed that the duration of rainfall is shortened and the frequency and intensity of heavy rains are increasing with a changing climate. In addition, due to high population density and urbanization in most areas, floods frequently occur in flood-prone areas for the increase in impermeable areas. Furthermore, the Seoul City is pursuing various projects such as structural and non-structural measures to resolve flood-prone areas. A disaster prevention performance target was set in consideration of the climate change impact of future precipitation, and this study conducted to reduce the overall flood damage in Seoul for the long-term. In this study, 29 GCMs with RCP4.5 and RCP8.5 scenarios were used for spatial and temporal disaggregation, and we also considered for 3 research periods, which is short-term (2006-2040, P1), mid-term (2041-2070, P2), and long-term (2071-2100, P3), respectively. For spatial downscaling, daily data of GCM was processed through Quantile Mapping based on the rainfall of the Seoul station managed by the Korea Meteorological Administration and for temporal downscaling, daily data were downscaled to hourly data through k-nearest neighbor resampling and nonparametric temporal detailing techniques using genetic algorithms. Through temporal downscaling, 100 detailed scenarios were calculated for each GCM scenario, and the IDF curve was calculated based on a total of 2,900 detailed scenarios, and by averaging this, the change in the future extreme rainfall was calculated. As a result, it was confirmed that the probability of rainfall for a duration of 100 years and a duration of 1 hour increased by 8 to 16% in the RCP4.5 scenario, and increased by 7 to 26% in the RCP8.5 scenario. Based on the results of this study, the amount of rainfall designed to prepare for future climate change in Seoul was estimated and if can be used to establish purpose-wise water related disaster prevention policies.

최근 서울시의 강수특성이 변하고 있으며, 폭우의 발생빈도와 강도가 점차 증가 추세임이 확인되고 있다. 또한, 대부분의 지역이 도시화가 이루어져 불투수 비율이 높고 인구와 재산이 밀집되어 있어 폭우 발생 시 직접유출에 의한 홍수피해가 가중되고 있는 실정이다. 서울시는 이러한 홍수피해에 적극적으로 대응하기 위하여 침수취약지역 해소사업을 추친 중이며, 구조물적·비구조물적 다양한 대응책을 제시하고 있다. 본 연구에서는 서울시의 미래 기후변화영향을 고려한 수공구조물의 방재성능 목표 설정을 위하여 29개의 GCM의 강수량자료를 활용하여 자료 기간을 단기(2006-2040, P1), 중기(2041-2070, P2), 및 장기(2071-2100, P3)로 구분하여 RCP4.5와 RCP8.5 시나리오에 대한 시공간적 상세화를 실시하였다. 공간상세화는 기상청에서 관리하는 서울관측소의 강우량을 기준으로 GCM의 일자료를 Quantile Mapping을 통하여 처리하였으며, 시간 상세화는 K-Nearest Neighbor Resampling 방법과 유전자알고리즘 방법을 이용한 비매개변수 시간상세화 기법을 통하여 일자료를 시간자료로 상세화하였다. 시간상세화를 통해 각 GCM 시나리오별로 100개의 상세화 시나리오가 산출되어 총 2,900개의 상세화 시나리오를 바탕으로 IDF 곡선을 산출하고 이를 평균하여 미래 극치 강우량의 변화를 산출하였다. 산정결과, 재현기간 100년 지속시간 1시간의 확률강우량은 RCP4.5 시나리오에서 8~16%의 증가 특성을 보이고 있음을 확인하였으며 RCP8.5 시나리오의 경우 7~26%의 증가가 이루어짐을 확인하였다. 본 연구결과는 서울시의 미래 기후변화를 대비한 설계강우량 산정 및 수준목표별 수방정책을 수립하는데 활용이 가능할 것으로 판단된다.

Keywords

Acknowledgement

이 논문은 서울기술연구원의 지원(2019-MR-03) 및 한국연구재단의 중견연구사업 지원(2018R1A2B600179914)을 받아 수행되었고, 이에 감사드립니다.

References

  1. Bao, Q., Lin, P., Zhou, T., Liu, Y., Yu, Y., Wu, G., He, B., He, J., Li, L., Li, J., Li, Y., Liu, H., Qiao, F., Song, Z., Wang, B., Wang, J., Wang, P., Wang, X., Wang, Z., and Zhou, L. (2013). "The flexible global ocean-atmosphere-land system model, spectral version 2: FGOALS-s2." Advances in Atmospheric Sciences, Vol. 30, No. 3, pp. 561-576. doi: 10.1007/s00376-012-2113-9
  2. Cho, J., Jung, I., Cho, W., and Hwang, S. (2018). "User-centered climate change scenarios technique development and application of Korean peninsula." Journal of Climate Change Research, Vol. 9, No. 1, pp. 13-29. doi: 10.15531/ksccr.2018.9.1.13
  3. Chylek, P., Li, J., Dubey, M., Wang, M. and Lesins, G., (2011). "Observed and model simulated 20th century arctic temperature variability: Canadian earth system model CanESM2." Atmospheric Chemistry and Physics Discussions, Vol. 11, No. 8, pp. 22893-22907. https://doi.org/10.5194/acpd-11-22893-2011
  4. Collins, W.J., Bellouin, N., Doutriaux-Boucher, M., Gedney, N., Hinton, T., Jones, C.D., Liddicoat, S., Martin, G., O'Connor, F., Rae, J., Senior, C., Totterdell, I., Woodward, S., Reichler, T., and Kim, J. (2008). Evaluation of HadGEM2 model. Technical Note 74, Meteorological Office Hadley Centre, UK, p.47.
  5. Doney, S.C., Lima, I., Feely, R.A., Glover, D.M., Lindsay, K., Mahowald, N., Moore, J.K., and Wanninkhof, R. (2009). "Mechanisms governing interannual variability in upper-ocean inorganic carbon system and air-sea CO2 fluxes: Physical climate and atmospheric dust." Deep-Sea Research Part II: Topical Studies in Oceanography, Vol. 56, No. 8-10, pp. 640655. doi: 10.1016/j.dsr2.2008.12.006
  6. Donner, L.J., Wyman, B.L., Hemler, R.S., Horowitz, L.W., Ming, Y., Zhao, M., Golaz, J.-C., Ginoux, P., Lin, S.-J., Schwarzkopf, M.D., Austin, J., Alaka, G., Cooke, W.F., Delworth, T.L., Freidenreich, S.M., Gordon, C.T., Griffies, S.M., Held, I.M., Hurlin, W.J., Klein, S.A., Knutson, T.R., Langenhorst, A.R., Lee, H.-C., Lin, Y., Magi, B.I., Malyshev, S.L., Milly, P.C.D., Naik, V., Nath, M.J., Pincus, R., Ploshay, J.J., Ramaswamy, V., Seman, C.J., Shevliakova, E., Sirutis, J.J., Stern, W.F., Stouffer, R.J., Wilson, R.J., Winton, M., Wittenberg, A.T., and Zeng, F. (2011). "The dynamical core, physical parameterizations, and basic simulation characteristics of the atmospheric component AM3 of the GFDL global coupled model CM3." Journal of Climate, Vol. 24, No. 13, pp. 3484-3519. doi: 10.1175/2011JCLI3955.1
  7. Dufresne, J.-L., Foujols, M.-A., Denvil, S., Caubel, A., Marti, O., Aumont, O., Balkanski, Y., Bekki, S., Bellenger, H., Benshila, R., Bony, S., Bopp, L., Braconnot, P., Brockmann, P., Cadule, P., Cheruy, F., Codron, F., Cozic, A., Cugnet, D., de Noblet, N., Duvel, J.-P., Ethe, C., Fairhead, L., Fichefet, T., Flavoni, S., Friedlingstein, P., Grandpeix, J.-Y., Guez, L., Guilyardi, E., Hauglustaine, D., Hourdin, F., Idelkadi, A., Ghattas, J., Joussaume, S., Kageyama, M., Krinner, G., Labetoulle, S., Lahellec, A., Lefebvre, M.-P., Lefevre, F., Levy, C., Li, Z.X., Lloyd, J., Lott, F., Madec, G., Mancip, M., Marchand, M., Masson, S., Meurdesoif, Y., Mignot, J., Musat, I., Parouty, S., Polcher, J., Rio, C., Schulz, M., Swingedouw, D., Szopa, S., Talandier, C., Terray, P., Viovy, N., and Vuichard, N. (2013). "Climate change projections using the IPSL-CM5 earth system model: From CMIP3 to CMIP5." Climate Dynamics, Vol. 40, No. 9-10.doi: 10.1007/s00382-012-1636-1
  8. Dunne, J.P., John, J.G., Adcroft, A.J., Griffies, S.M., Hallberg, R.W., Shevliakova, E., Stouffer, R.J., Cooke, W., Dunne, K.A., Harrison, M.J., Krasting, J.P., Malyshev, S.L., Milly, P.C.D., Phillipps, P.J., Sentman, L.T., Samuels, B.L., Spelman, M.J., Winton, M., Wittenberg, A.T., and Zadeh, N. (2012). "GFDL's ESM2 global coupled climate-carbon earth system models. Part I: Physical formulation and baseline simulation characteristics." Journal of Climate, Vol. 25, No. 19, pp. 6646-6665. doi: 10.1175/JCLI-D-11-00560.1
  9. Fowler, H.J., Ekstrom, M., Kilsby, C.G., and Jones, P.D. (2005). "New estimates of future changes in extreme rainfall across the UK using regional climate model integrations. 1. Assessment of control climate." Journal of Hydrology, Vol. 300, No. 1-4, pp. 212-233. doi: 10.1016/j.jhydrol.2004.06.017
  10. Gent, P.R., Danabasoglu, G., Donner, L.J., Holland, M.M., Hunke, E.C., Jayne, S.R., Lawrence, D.M., Neale, R.B., Rasch, P.J., Vertenstein, M., Worley, P.H., Yang, Z.L., and Zhang, M. (2011). "The community climate system model version 4." Journal of Climate, Vol. 24, No. 19, pp. 4973-4991. doi: 10.1175/2011JCLI4083.1
  11. Giorgetta, M.A., Jungclaus, J., Reick, C.H., Legutke, S., Bader, J., Bottinger, M., Brovkin, V., Crueger, T., Esch, M., Fieg, K., Glushak, K., Gayler, V., Haak, H., Hollweg, H.-D., Ilyina, T., Kinne, S., Kornblueh, L., Matei, D., Mauritsen, T., Mikolajewicz, U., Mueller, W., Notz, D., Pithan, F., Raddatz, T., Rast, S., Redler, R., Roeckner, E., Schmidt, H., Schnur, R., Segschneider, J., Six, K.D., Stockhause, M., Timmreck, C., Wegner, J., Widmann, H., Wieners, K.-H., Claussen, M., Marotzke, J., and Stevens, B. (2013). "Climate and carbon cycle changes from 1850 to 2100 in MPI-ESM simulations for the Coupled Model Intercomparison Project phase 5." Journal of Advances in Modeling Earth Systems, Vol. 5, No. 3, pp. 572-597. doi: 10.1002/jame.20038
  12. Intergovernmental Panel on Climate Change (IPCC) (2013). Climate change 2013: The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, NY, USA.
  13. Jang, S.-W., Seo, L., Kim, T.-W., and Ahn, J.-H. (2011). "Nonstationary rainfall frequency analysis based on residual analysis." Journal of The Korean Society of Civil Engineers, Vol. 31, No. 5B, pp. 449-457. doi: 10.12652/Ksce.2011.31.5B.449
  14. Jones, C.D., Hughes, J.K., Bellouin, N., Hardiman, S.C., Jones, G.S., Knight, J., Liddicoat, S., O'Connor, F.M., Andres, R.J., Bell, C., Boo, K.-O., Bozzo, A., Butchart, N., Cadule, P., Corbin, K.D., Doutriaux-Boucher, M., Friedlingstein, P., Gornall, J., Gray, L., Halloran, P.R., Hurtt, G., Ingram, W.J., Lamarque, J.-F., Law, R.M., Meinshausen, M., Osprey, S., Palin, E.J., Parsons Chini, L., Raddatz, T., Sanderson, M.G., Sellar, A.A., Schurer, A., Valdes, P., Wood, N., Woodward, S., Yoshioka, M., and Zerroukat, M. (2011). "The HadGEM2-ES implementation of CMIP5 centennial simulations." Geoscientific Model Development, Vol. 4, No. 3, pp. 543-570. doi: 10.5194/gmd-4-543-2011
  15. Jungclaus, J.H., Keenlyside, N., Botzet, M., Haak, H., Luo, J.J., Latif, M., Marotzke, J., Mikolajewicz, U., and Roeckner, E. (2006). "Ocean circulation and tropical variability in the coupled model ECHAM5/MPI-OM." Journal of Climate, Vol. 19, No. 16, pp. 3952-3972. doi: 10.1175/JCLI3827.1
  16. Kay, A.L., Jones, R.G., and Reynard, N.S. (2006). "RCM rainfall for UK flood frequency estimation. II. Climate change results." Journal of Hydrology, Vol. 318, No. 1-4, pp. 163-172. doi: 10.1016/j.jhydrol.2005.06.013
  17. Kim, J.S., Jain, S., Lee, J.H., Chen, H., and Park, S.Y. (2019). "Quantitative vulnerability assessment of water quality to extreme drought in a changing climate." Ecological Indicators, Vol. 103, pp. 688-697. doi: 10.1016/j.ecolind.2019.04.052
  18. Kingston, D.G., Todd, M.C., Taylor, R.G., Thompson, J.R., and Arnell, N.W. (2009). "Uncertainty in the estimation of potential evapotranspiration under climate change." Geophysical Research Letters, Vol. 36, No. 20, pp. 3-8. doi: 10.1029/2009GL040267
  19. Kwon, M.H., Jhun, J.G., and Ha, K.J. (2007). "Decadal change in east Asian summer monsoon circulation in the mid-1990s." Geophysical Research Letters, Vol. 34, No. 21, pp. 1-6. doi: 10.1029/2007GL031977
  20. Lee, O., and Kim, S. (2016). "Future PMPs projection under future dew point temperature variation of RCP 8.5 climate change scenario." Journal of Korean Society of Hazard Mitigation, Vol. 16, No. 2, pp. 505-514. doi: 10.9798/kosham.2016.16.2.505
  21. Lee, T., and Jeong, C. (2014). "Nonparametric statistical temporal downscaling of daily precipitation to hourly precipitation and implications for climate change scenarios." Journal of Hydrology, Vol. 510, pp. 182-196. doi: 10.1016/j.jhydrol.2013.12.027
  22. Lee, T., and Ouarda, T.B.M.J. (2011). "Prediction of climate nonstationary oscillation processes with empirical mode decomposition." Journal of Geophysical Research Atmospheres, Vol. 116, No. 6, pp. 1-15. doi: 10.1029/2010JD015142
  23. Lee, T., and Park, T. (2017). "Nonparametric temporal downscaling with event-based population generating algorithm for RCM daily precipitation to hourly: Model development and performance evaluation." Journal of Hydrology, Vol. 547, pp. 498-516. doi: 10.1016/j.jhydrol.2017.01.049
  24. Lee, T., Son, C., Kim, M., Lee, S., and Yoon, S. (2020). "Climate change adaptation to extreme rainfall events on a local scale in Namyangju, South Korea." Journal of Hydrologic Engineering, Vol. 25, No. 5, 05020005. doi: 10.1061/(asce)he.1943-5584.0001906.
  25. Li, L., Lin, P., Yu, Y., Wang, B., Zhou, T., Liu, L., Liu, J., Bao, Q., Xu, S., Huang, W., Xia, K., Pu, Y., Dong, L., Shen, S., Liu, Y., Hu, N., Liu, M., Sun, W., Shi, X., Zheng, W., Wu, B., Song, M., Liu, H., Zhang, X., Wu, G., Xue, W., Huang, X., Yang, G., Song, Z., and Qiao, F. (2013). "The flexible global oceanatmosphere- land system model, Grid-point Version 2: FGOALS-g2." Advances in Atmospheric Sciences, Vol. 30, No. 3, pp. 543-560. doi: 10.1007/s00376-012-2140-6
  26. Manzini, E., Cagnazzo, C., Fogli, P.G., Bellucci, A., and Mller, W.A. (2012). "Stratosphere-troposphere coupling at inter-decadal time scales: Implications for the North Atlantic Ocean." Geophysical Research Letters, Vol. 39, No. 5, pp. 1-6. doi: 10.1029/2011GL050771
  27. Martin, G.M., Bellouin, N., Collins, W.J., Culverwell, I.D., Halloran, P.R., Hardiman, S.C., Hinton, T.J., Jones, C.D., McDonald, R.E., McLaren, A.J., O'Connor, F.M., Roberts, M.J., Rodriguez, J.M., Woodward, S., Best, M.J., Brooks, M.E., Brown, A.R., Butchart, N., Dearden, C., Derbyshire, S.H., Dharssi, I., Doutriaux-Boucher, M., Edwards, J.M., Falloon, P.D., Gedney, N., Gray, L.J., Hewitt, H.T., Hobson, M., Huddleston, M.R., Hughes, J., Ineson, S., Ingram, W.J., James, P.M., Johns, T.C., Johnson, C.E., Jones, A., Jones, C.P., Joshi, M.M., Keen, A.B., Liddicoat, S., Lock, A.P., Maidens, A.V., Manners, J.C., Milton, S.F., Rae, J.G.L., Ridley, J. K.. Sellar, A., Senior, C.A., Totterdell, I.J., Verhoef, A., Vidale, P.L., and Wiltshire, A. (2011). "The HadGEM2 family of Met Office Unified Model climate configurations." Geoscientific Model Development, Vol. 4, No. 3, pp. 723-757. doi: 10.5194/gmd-4-723-2011
  28. Neale, R.B., Richter, J.H., Conley, A.J., Park, S., Lauritzen, P.H., Gettelman, A., and Williamson, D.L. (2010). "Description of the NCAR Community Atmosphere Model (CAM 4.0)." Asthetische Zahnmedizin, Vol. 55, No. 8, pp. 926-930.
  29. Rim, C.-S., and Kim, S.-Y. (2014). "Climate aridity/humidity characteristics in Seoul according to changes in temperature and precipitation based on RCP 4.5 and 8.5." Journal of Korea Water Resources Association, Vol. 47, No. 5, pp. 421-433. doi: 10.3741/JKWRA.2014.47.5.421
  30. Rotstayn, L.D., Collier, M.A., Dix, M.R., Feng, Y., Gordon, H.B., O'Farrell, S.P., Smith, I.N., and Syktus, J. (2010). "Improved simulation of Australian climate and ENSO-related rainfall variability in a global climate model with an interactive aerosol treatment." International Journal of Climatology, Vol. 30, No. 7, pp. 1067-1088. doi: 10.1002/joc.1952
  31. Scoccimarro, E., Gualdi, S., Bellucci, A., Sanna, A., Fogli, P.G., Manzini, E., Vichi, M., Oddo, P., and Navarra, A. (2011). "Effects of tropical cyclones on ocean heat transport in a high-resolution coupled general circulation model." Journal of Climate, Vol. 24, No. 16, pp. 4368-4384. doi: 10.1175/2011JCLI4104.1
  32. Sillmann, J., Kharin, V.V., Zwiers, F.W., Zhang, X., and Bronaugh, D. (2013). "Climate extremes indices in the CMIP5 multi-model ensemble: Part 2. Future climate projections." Journal of Geophysical Research Atmospheres, Vol. 118, No. 6, pp. 2473-2493. doi: 10.1002/jgrd.50188
  33. Tjiputra, J.F., Roelandt, C., Bentsen, M., Lawrence, D.M., Lorentzen, T., Schwinger, J., Seland, O., and Heinze, C. (2013). "Evaluation of the carbon cycle components in the Norwegian Earth System Model (NorESM)." Geoscientific Model Development, Vol. 6, No. 2, pp. 301-325. doi: 10.5194/gmd-6-301-2013
  34. Villarini, G., Scoccimarro, E., and Gualdi, S. (2013). "Projections of heavy rainfall over the central United States based on CMIP5 models." Atmospheric Science Letters, Vol. 14, No. 3, pp. 200-205. doi: 10.1002/asl2.440
  35. Voldoire, A., Sanchez-Gomez, E., Salas y Melia, D., Decharme, B., Cassou, C., Senesi, S., Valcke, S., Beau, I., Alias, A., Chevallier, M., Deque, M., Deshayes, J., Douville, H., Fernandez, E., Madec, G., Maisonnave, E., Moine, M.-P., Planton, S., Saint-Martin, D., Szopa, S., Tyteca, S., Alkama, R., Belamari, S., Braun, A., Coquart, L., and Chauvin, F. (2013). "The CNRM-CM5.1 global climate model: Description and basic evaluation." Climate Dynamics, Vol. 40, No. 9, pp. 2091-2121. doi: 10.1007/s00382-011-1259-y
  36. Volodin, E., Dianskii, N., and Gusev, A. (2010). "Simulating presentday climate with the INMCM4.0 coupled model of the atmospheric and oceanic general circulations." Izvestiya, Atmospheric and Oceanic Physics, Vol. 46, No. 4, pp. 414-431. https://doi.org/10.1134/S000143381004002X
  37. Watanabe, M., Suzuki, T., O'Ishi, R., Komuro, Y., Watanabe, S., Emori, S., Takemura, T., Chikira, M., Ogura, T., Sekiguchi, M., Takata, K., Yamazaki, D., Yokohata, T., Nozawa, T., Hasumi, H., Tatebe, H., and Kimoto, M. (2010). "Improved climate simulation by MIROC5: Mean states, variability, and climate sensitivity." Journal of Climate, Vol. 23, No. 23, pp. 6312-6335. doi: 10.1175/2010JCLI3679.1
  38. Watanabe, S., Hajima, T., Sudo, K., Nagashima, T., Takemura, T., Okajima, H., Nozawa, T., and Kawase, H. (2011a). "MIROC-ESM 2010: Model description and basic results of CMIP5-20c3m experiments." Geoscientific Model Development, Vol. 4, No. 4, p. 845. https://doi.org/10.5194/gmd-4-845-2011
  39. Watanabe, S., Hajima, T., Sudo, K., Nagashima, T., Takemura, T., Okajima, H., Nozawa, T., Kawase, H., Abe, M., Yokohata, T., Ise, T., Sato, H., Kato, E., Takata, K., Emori, S., and Kawamiya, M. (2011b). "MIROC-ESM 2010: Model description and basic results of CMIP5-20c3m experiments." Geoscientific Model Development, Vol. 4, pp. 845-872, doi: 10.5194.gmd-4-845-2011. https://doi.org/10.5194.gmd-4-845-2011
  40. Wood, E.F., Roundy, J.K., Troy, T.J., van Beek, L.P.H., Bierkens, M.F.P., Blyth, E., Roo, A. de, Doll, P., Ek, M., Famiglietti, J., Gochis, D., van de Giesen, N., Houser, P., Jaffe, P.R., Kollet, S., Lehner, B., Lettenmaier, D.P., Peters-Lidard, C., Sivapalan, M., Sheffield, J., Wade, A., and Whitehead, P., (2011). "Hyperresolution global land surface modeling: Meeting a grand challenge for monitoring Earth's terrestrial water." Water Resources. Research, Vol. 47, W05301, doi:10.1029/2010WR010090
  41. Wu, T., Song, L., Li,W., Wang, Z., Zhang, H., Xin, X., Zhang, Y., Zhang, L., Li, J., Wu, F., Liu, Y., Zhang, F., Shi, X., Chu, M., Zhang, J., Fang, Y., Wang, F., Lu, Y., Liu, X., Wei, M., Liu, Q., Zhou, W., Dong, M., Zhao, Q., Ji, J., Li, L., and Zhou, M. (2014). "An overview of BCC climate system model development and application for climate change studies." Journal of Meteorological Research, Vol. 28, No. 1, pp. 34-56. doi: 10.1007/s13351-014-3041-7
  42. Wu, T., Yu, R., Zhang, F., Wang, Z., Dong, M., Wang, L., Jin, X., Chen, D., and Li, L. (2010). "The Beijing climate center atmospheric general circulation model: Description and its performance for the present-day climate." Climate Dynamics, Vol. 34, No. 1, pp. 123-147. doi: 10.1007/s00382-008-0487-2
  43. Yoon, S., and Cho, J. (2015). "The uncertainty of extreme rainfall in the near future and its frequency analysis over the Korean Peninsula using CMIP5 GCMs." Journal of the Korean Water Resources Association, Vol. 48, No. 10, pp. 817-830. doi: 10.3741/JKWRA.2015.48.10.817
  44. Yoon, S., Jang, S., Rhee, J., and Cho, J. (2017). "Analysis of future extreme rainfall under climate change over the landslide risk zone in urban areas." Korean Society of Hazard Mitigation, Vol. 17, No. 5, pp. 355-367. doi: 10.9798/kosham.2017.17.5.355
  45. Yukimoto, S., Adachi, Y., Hosaka, M., Sakami, T., Yoshimura, H., Hirabara, M., Tanaka, T.Y., Shindo, E., Tsujino, H., Deushi, M., Mizuta, R., Yabu, S., Obata, A., Nakano, H., Koshiro, T., Ose, T., and Kitoh, A. (2012). "A new global climate model of the Meteorological Research Institute: MRI-CGCM3: -Model description and basic performance-." Journal of the Meteorological Society of Japan, Vol. 90, No. A, pp. 23-64. doi: 10.2151/jmsj.2012-A02