DOI QR코드

DOI QR Code

A study on the estimation and evaluation of ungauged reservoir inflow for local government's agricultural drought forecasting and warning

지자체 농업가뭄 예·경보를 위한 미계측 저수지의 유입량 추정 및 평가

  • Choi, Jung-Ryel (Department of Urban Environmental Disaster Management, Kangwon National University) ;
  • Yoon, Hyeon-Cheol (Disaster Prevention Research Division, National Disaster Management Research Institute) ;
  • Won, Chang-Hee (Disaster Prevention Research Division, National Disaster Management Research Institute) ;
  • Lee, Byung-Hyun (Department of Urban Environmental Disaster Management, Kangwon National University) ;
  • Kim, Byung-Sik (Department of Urban Environmental Disaster Management, Kangwon National University)
  • 최정렬 (강원대학교 도시환경재난관리전공) ;
  • 윤현철 (국립재난안전연구원 방재연구실) ;
  • 원창희 (국립재난안전연구원 방재연구실) ;
  • 이병현 (강원대학교 도시환경재난관리전공) ;
  • 김병식 (강원대학교 도시환경재난관리전공)
  • Received : 2021.04.19
  • Accepted : 2021.05.02
  • Published : 2021.06.30

Abstract

When issuing forecasts and alerts for agricultural drought, the relevant ministries only rely on the observation data from the reservoirs managed by the Korea Rural Community Corporation, which creates gaps between the drought analysis results at the local (si/gun) governments and the droughts actually experienced by local residents. Closing these gaps requires detailed local geoinformation on reservoirs, which in turn requires the information on reservoirs managed by local governments across Korea. However, installing water level and flow measurement equipment at all of the reservoirs would not be reasonable in terms of operation and cost effectiveness, and an alternate approach is required to efficiently generate information. In light of the above, this study validates and calibrates the parameters of the TANK model for reservoir basins, divided them into groups based on the characteristics of different basins, and applies the grouped parameters to unmeasured local government reservoirs to estimate and assess inflow. The findings show that the average determinant coefficient and the NSE of the group using rice paddies and inclinations are 0.63 and 0.62, respectively, indicating better results compared with the basin area and effective storage factors (determinant coefficient: 0.49, NSE: 0.47). The findings indicate the possibility of utilizing the information regarding unmeasured reservoirs managed by local governments.

현재 관계부처 합동 농업가뭄 예·경보시 한국농어촌공사 관리 저수지의 관측정보만을 활용하고 있어 시군 단위 가뭄 분석 결과와 지자체 체감가뭄과의 괴리가 발생하고 있다. 지자체 단위 체감가뭄 예·경보를 위해서는 공간적으로 세밀하고 국지적인 저수지 정보가 필요하며, 이를 위해서는 전국적으로 분포된 지자체 관리 저수지 정보의 활용이 필요하다. 그러나 전국에 분포하고 있는 전체 지자체 관리 저수지에 수위 및 유량 관측 시설을 설치하는 것은 운영 및 비용 측면에서 합리적이지 않으므로 효율적인 정보 생성 방안이 필요하다. 이에 따라 본 연구에서는 관측자료가 존재하는 저수지 유역을 대상으로 장기유출 모형인 TANK 모형의 매개변수를 검·보정하고, 유역특성인자를 이용하여 그룹화 한 후 그룹화된 TANK 모형의 매개변수를 미계측 지자체 저수지 유역에 적용하여 유입량 예측 및 평가를 하였다. 평가 결과 논, 경사를 이용한 그룹의 결정계수 평균이 0.63, NSE가 0.62로, 유역면적과 유효저수량 인자를 이용했을 때(결정계수 0.49, NSE 0.47) 보다 좋은 결과를 보여주었으며, 미계측 지자체 관리 저수지 정보의 활용 가능성을 확인할 수 있었다.

Keywords

Acknowledgement

본 연구는 행정안전부 극한재난대응기반기술개발 사업의 연구비 지원(2019-MOIS31-010)에 의해 수행되었습니다.

References

  1. Amiri, B.J., Fohrer, N., Cullmann, J., Hormann, G., Muller, F., and Adamowski, J. (2016). "Regionalization of Tank model using landscape metrics of catchments." Water Resources Management, Vol. 30, No. 14, pp. 5065-5085. doi: 10.1007/s11269-016-1469-5
  2. An, J.H., Song, J.H., Kang, M.S., Song, I.H., Ju, S.M., and Park, J.H. (2015). "Regression equations for estimating the TANK model parameters." Journal of the Korean Society of Agricultural Engineers, Vol. 57, No. 4, pp. 121-133. https://doi.org/10.5389/KSAE.2015.57.4.121
  3. Bobe'e, B. (1973). "Sample error of T-year events computed by fitting a Pearson type 3 distribution." Water Resources Research. Vol. 9, No. 5, pp. 1264-1270. https://doi.org/10.1029/WR009i005p01264
  4. Cho, B.H., Bae, D.H., Kim, M.J., and Kim, H.J. (2004). "A study on regionalization of long-term runoff model parameters." Proceedings of the 2004 Korea Water Resources Association Conference, KWRA, pp. 1032-1036.
  5. Cho, T.G., Kim, Y.O., and Lee, K.S. (2007). "Improving low flow estimation for ungauged basins in Korea." Journal of the Korea Water Resources Association, Vol. 40, No. 2, pp. 113-124. https://doi.org/10.3741/JKWRA.2007.40.2.113
  6. Draper, N.R., and Smith, H. (1981). Applied regression analysis. Wiley, NY, U.S.
  7. Hugo, H.C.D.S., Adriana, M.D.C., Joa, H.M.V., Marysol, A.S., Annika, K., Luis, F.S.F., and Fernando, A.L.P. (2019). "Hydrologic modeling for sustainable water resources management in urbanized karst rreas." International Journal of Environmental Research and Public Health, Vol. 16, No. 14, 2542. doi: 10.3390/ijerph16142542
  8. Kang, M.G., Lee, J.H., and Park, K.W. (2013). "Parameter regionalization of Tank model for simulating runoffs from ungauged watersheds." Journal of the Korea Water Resources Association, Vol. 46, No. 5, pp. 519-530. https://doi.org/10.3741/JKWRA.2013.46.5.519
  9. Kim, H.Y., and Park, S.W. (1986). "An evaluation of parameter variations for a linear reservoir (TANK) model with watershed characteristics." Journal of Korean Society of Agricultural Engineers, Vol. 28, No. 2, pp. 42-52.
  10. Kim, H.Y., and Park, S.W. (1988). "Simulating daily inflow and release rates for irrigation reservoirs (I). Modeling inflow rates by a linear reservoir model." Journal of Korean Society of Agricultural Engineers, Vol. 30, No. 1, pp. 50-62.
  11. Kim, T.J., Jeong, G.I., Kim, K.Y., and Kwon, H.H. (2015). "A study on regionalization of parameters for sacramento continuous rainfall-runoff model using watershed characteristics." Journal of the Korea Water Resources Association, Vol. 48, No. 10, pp. 793-806. https://doi.org/10.3741/JKWRA.2015.48.10.793
  12. Kokkonen, T.S., Jakeman, A.J., Young, P.C., and Koivusalo, H.J. (2003). "Predicting daily flows in ungauged catchments: Model regionalization from catchment descriptors at the Coweeta Hydrologic Laboratory, North Carolina." Hydrol Process, Vol. 17, No. 11, pp. 2219-2238. https://doi.org/10.1002/hyp.1329
  13. Lee, B.J., Jung, I.M., and Bae, D.H. (2009). "Parameter regionalization of semi-distributed runoff model using multivariate statistical analysis." Journal of the Korea Water Resources Association, Vol. 42, No. 2, pp. 149-160. https://doi.org/10.3741/JKWRA.2009.42.2.149
  14. Lee, H.S., Park, K.S., Jung, S.H., and Choi, S.K. (2013). "Catchment similarity assessment based on catchment characteristics of gis in geum river catchments, Korea." Journal of the Korean Society for Geospatial Information System, Vol. 21, No. 3, pp. 37-46. https://doi.org/10.7319/KOGSIS.2013.21.3.037
  15. Lee, S.L., Park, S.D., Shin, S.S., Kim, K.S., Kim, J.G., Lim, and K.J. (2018). "Development and evaluation of sediment delivery ratio equation using clustering methods for estimation of sediment discharge on ungauged basins in Korea." Journal of Korean Society on Water Environment, Vol. 34, No. 5, pp. 537-547. https://doi.org/10.15681/KSWE.2018.34.5.537
  16. McCuen, R.H., Leahy, R.B., and Johnson, P.A. (1990). "Problems with logarithmic transformations in regression." ASCE, Journal of Hydrology Engineering, Vol. 116, No. 3, pp. 414-428. https://doi.org/10.1061/(ASCE)0733-9429(1990)116:3(414)
  17. Ministry of Land, Infrastructure and Transportation of Korea (MOLIT) (2000). The long-term comprehensive water resource plan (Water Vision 2020).
  18. Ministry of Land, Infrastructure and Transportation of Korea (MOLIT) and K-water (2004). Nakdong River basin investigation, technical report.
  19. National Disaster Management Research Institute (NDMI) (2017). Development of integrated forecasting and warning platform for national drought information (I).
  20. National Disaster Management Research Institute (NDMI) (2019). Development of integrated forecasting and warning platform for national drought information (III).
  21. Pandey, G.R., and Nguyen, T.-T.-V. (1999). "A comparative study of regression based methods in regional flood frequency analysis." Journal of Hydrology, Vol. 225, pp. 92-101. https://doi.org/10.1016/S0022-1694(99)00135-3
  22. Park, N.H., Yang, J.R., and Yoon, J.H. (2001). "Improvement of inflow calculation method in reservoir." Journal of the Korean Society of Civil Engineers, Vol. 21, No. 4, pp. 335-346.
  23. Rousseeuw, P.J., and Leroy, A.M. (1987). Robust regression and outlier detection. Wiley, NY, U.S.
  24. Song, J.H. (2017). Hydrologic analysis system with mutil-objective optimization for agricultural watersheds (Doctoral dissertation). Seoul National University.
  25. Sugawara, M. (1985). "Tank model." Journal of Geography (Chigaku Zasshi), Vol. 94, No. 4, pp. 209-221. https://doi.org/10.5026/jgeography.94.4_209
  26. Tasker, G.D., and Stedinger, J.R. (1987). "Regional regression of flood characteristics employing historical information." Journal of Hydrology, Vol. 96, pp. 255-264. https://doi.org/10.1016/0022-1694(87)90157-0
  27. Thomas, D.M., and Benson, M.A. (1970). Generalization of stream-flow characteristics from drainage-basin characteristics. US Geological Survey, Water Supply Paper, 1975, U.S. Government Publishing Office, Washington, D.C, U.S.