
Journal of the Korea Industrial Information Systems Research Vol.26 No.3, Jun. 2021 :1-7
http://dx.doi.org/10.9723/jksiis.2021.26.3.001 ISSN:1229-3741

- 1 -

* Corresponding Author: sgjin@daegu.ac.kr
+ 이 성과는 2016년도 정부(교육부)의 재원으로 한국연구재단의
지원을 받아 수행된 연구임(NRF-2016R1D1A1B04932067)
Manuscript received May 19, 2021 / revised June 17, 2021

/ accepted June 20, 2021
1) 대구대학교 컴퓨터소프트웨어학과, 제1저자, 교신저자
2) 한국전자통신연구원 고신뢰CPS연구그룹 책임연구원, 제2저자

Fog Computing 환경에서의 최적화된 컨테이너
배포 정책+

1)

(An Optimal Container Deployment Policy in Fog Computing
Environments)

진 성 근1)*, 전 인 걸2)

(Sunggeun Jin and In-Geol Chun)

 요 약 Fog Computing (FC) 호스트의 새로운 요청 도착에 대처하기 위해 적절한 컨테이너가

배포된다. 이 경우 두 가지 시나리오를 고려할 수 있다. (1) 컨테이너 배포를 위한 충분한 자원이 준

비될 때까지 요청이 대기열에 추가될 수 있다. (2) FC 호스트는 자원이 제한되거나 부족하여 새 컨

테이너 배포를 수용할 수 없는 경우 도착한 서비스 요청을 근처 FC 호스트로 전송할 수 있다. 여기
서, 더 많은 인접 FC 호스트를 사용할수록 각 FC 호스트의 컨테이너 배포 시간이 더 짧아 진다. 반

면, FC 호스트 수가 증가할수록 더 많은 FC 호스트를 거쳐가야 하므로 서비스 요청이 전달되는데

더 긴 시간이 걸릴 수 있다. 이러한 이유로 활용되는 FC 호스트의 수에 따라 컨테이너 배포 시간에
따른 트레이드오프 관계가 성립한다. 결과적으로, 우리는 최적의 인접 FC 호스트 수를 사용하기 위

해 트레이드오프 관계를 분석한다.

핵심주제어: 포그 컴퓨팅, 컨테이너 배포

Abstract Appropriate containers are deployed to cope with new request arrivals at Fog
Computing (FC) hosts. In the case, we can consider two scenarios: (1) the requests may be

queued until sufficient resources are prepared for the container deployments; (2) FC hosts may

transfer arrived service requests to nearby FC hosts when they cannot accommodate new
container deployments due to their limited or insufficient resources. Herein, for more employed

neighboring FC hosts, arrived service requests may experience shorter waiting time in container

deployment queue of each FC host. In contrast, they may take longer transfer time to pass
through increased number of FC hosts. For this reason, there exists a trade-off relationship in

the container deployment time depending on the number of employed FC hosts accommodating

service request arrivals. Consequently, we numerically analyze the trade-off relationship to
employ optimal number of neighboring FC hosts.

Keywords: Fog computing, container deployment.

An Optimal Container Deployment Policy in Fog Computing Environments

- 2 -

1. INTRODUCTION

In the past few years, we have witnessed

fast evolution of Fifth-Generation (5G) net-

work technologies providing extremely low

latency for various services having stringent

time requirements such as connected vehicles,

smart factories, augmented reality services

and streaming games. Accordingly, it is ex-

pected to control drones and vehicles accu-

rately in remote places and enjoy streaming

games giving rich user experiences in near

future [3], [5].

Meanwhile, cloud computing services have

proliferated on a worldwide scale, thus mak-

ing it possible to enjoy complicated applica-

tions, high performance servers, and virtual

desktop services online without advanced per-

sonal computers, cumbersome software in-

stallations, and annoying system managements.

In spite of the benefits, cloud computing

servers are generally located far from the

places where users are trying to access.

Accordingly, it may take long time to reach

long-distance servers so that long round-trip

times may incur service disruptions. In addi-

tion, tremendous number of user devices gen-

erate overwhelming data so that cloud com-

puting servers suffer from manipulating those

data. For this reason, Fog Computing (FC) as

an edge computing technology was introduced

to provide prompt cloud computing services

and/or reduce redundant data processing

overhead on cloud computing servers by

bringing a part of functions provided by cloud

computing servers to the places near to the

5G users.

The FC hosts may expedite Internet-of-Things

(IoT) services by dramatically reducing op-

erational overhead with FC applications run-

ning on the edge of 5G networks. For the

purpose, it is necessary to launch FC applica-

tions suitable for the services on selected FC

hosts. It is realized by deploying proper con-

tainers providing light virtual operational en-

vironments for the FC applications runs [4].

Basically, a proper FC application begins at

a container on the FC host where a user trig-

gers a new service. Occasionally, the FC host

may not accommodate the FC application since

typical FC hosts may have limited resources

due to their innate feature for embedded sys-

tems [2]. Then, it may transfer the requests to

the other neighbouring FC hosts in order to

deploy containers and launch proper FC

applications. This transfer operation is allowed

through edge computing server interfaces de-

fined in European Telecommunications

Standards Institute (ETSI) standard [1].

However, we may experience additional la-

tency for the container deployment since the

requests may travel through several FC hosts

until arriving at affordable FC hosts. In other

words, farther hosts are employed, longer la-

tency it takes for the container deployments.

On the contrary, thanks to the request

transfers at the requested FC host, the re-

quested FC host has reduced number of

requests. Therefore, the waiting times are

shortened in the container deployment queue.

Consequently, it is true that forwarding re-

quests may be accumulated in the container

deployment queues in the steady state as de-

tailed later. Nevertheless, the request transfers

may incur decrease of the waiting times in

container deployment queues and increase of

forwarding latency over multiple FC hosts.

For this reason, we can recognize that there

exists trade-off relationship in the view of

overall container deployment times depending

on how to manage the request transfers over

FC hosts. In the paper, we show the

trade-off relationship by conducting numerical

analysis. Then, we explain an optimal con-

 Journal of the Korea Industrial Information Systems Research Vol.26 No.3, Jun. 2021 :1-7

- 3 -

tainer deployment strategy.

The paper is organized as follows: In

Section II, we explain our FC system model

and its operations for our numerical analysis.

In Section III, we numerically analyse the FC

system model with our assumptions. In

Section IV, we discuss an optimal container

deployment strategy with evaluations of nu-

merical equations. Section V concludes this

paper.

2. SYSTEM MODEL

Each FC host has a scheduler in charge of

container placements. When a new service is

requested to an FC host, it usually deploys a

new container in order to launch the service.

However, it is possible that the resources in

an FC host are occasionally exhausted for

various reasons including overloaded traffic

and/or computations.

In this case, the scheduler in an FC needs

to determine whether to deploy a new con-

tainer in spite of the depleted resources or

transfer the request to a neighbouring FC

host depending on its resource utilization

status. The transferred requests are treated

as a normal request in its neighbouring FC

hosts. Accordingly, their schedulers should

determine to accommodate or forward the

transferred requests depending on its resource

availability. In any events, it takes time to

manage the requests for container deployment

as well as request forwarding.

In our system,  FC hosts are grouped

and each FC host is capable of deploying 

containers. The hosts in each group are se-

lected by the order of request forwarding la-

tency from an originated FC host. Fig. 1

shows a logical topology for FC hosts. From

this figure, we elaborate on how to manage

container deployment requests below: (1)

Once a request arrives, an FC host deploys a

container suitable for the request in case

when there a room for the deployment. (2)

When FC host fails to deploy a container due

to its insufficient resources, it transfers the

request to its nearest FC host in terms of

forwarding latency. (3) In case of the deploy-

ment failure in its nearest FC host, the re-

quest is repeatedly forwarded to the next FC

hosts in turn until successful container

deployment. (4) The request forwarding is

stopped when none of available FC hosts are

found in a group having  FC hosts. (5)

Instead, the request is queued in the origi-

nated FC host and stays waiting for success-

ful container deployment.

Fig. 2 shows a Markov process represent-

ing the container deployment operation for our

system model. In the figure,  indicates

the state that  service requests are queued

an FC host while waiting for container

deployment. In the steady state,  of all

FC hosts are identical since we consider in-

finite number of hosts and their groups. For

each group, index  is labeled in order of

forwarding latency from the FC host where a

service request arrives. Obviously, the con-

tainer deployment requests are serviced when

≦  so that containers can be deployed up

to  . Otherwise, the requests are transferred

Fig. 1 Container deployments over FC hosts

An Optimal Container Deployment Policy in Fog Computing Environments

- 4 -

to a nearest available FC host while they are

queued for none of available neighbouring FC

hosts.

3. Numerical Analysis

For the numerical analysis, we have four

assumptions summarized by: (1) service re-

quest arrivals follow Poisson distribution with

mean rate ; (2) container lifetimes are ex-

ponentially distributed with the mean time of

; (3) each FC host can accommodate 

containers at maximum; (4) container deploy-

ment requests may experience additional for-

warding latency given by its expectation

  between two neighbouring FC hosts.

For our analysis, we should consider the

operations in the steady state. As explained

previously, an available FC host receives con-

tainer deployment requests from its fully oc-

cupied neighbouring FC hosts belonging to

the same group with the recipient FC host. In

the steady state, due to the fact that there

are infinite number of groups and each FC

host shares the same operations as other FC

hosts, all FC hosts have homogeneous queue.

Therefore, we can analyze it with a single

queue while considering the request transfer

rate and incoming request rate due to neigh-

bors’ request transfer operations.

Now, we consider stationary probability pin

for the stationary state that there are  re-

quests in a queue of an FC host. Herein, we

can derive the probability  representing the

case when an FC host is fully occupied by:

 = 
  

∞

 . (1)

Assuming neighbouring  FC hosts are

reserved for container deployments, we can

derive the probability  for container deploy-

ment request transfer to a nearest available

FC host by:

  =  
  

  

 


=   
  . (2)

Note that the probability ( ) indicates

a request is queued for none of available FC

hosts. Therefore, we have      and

     . From the equations, we can

derive stationary probability  with FC host

utilization ratio    in case when con-

tainers of an FC host are not fully utilized

by:

 = 


   = 


 

 (3)

where  ≤ ≤  . We continue to have 

for  <  by:

Fig. 2 A Markov process for the container deployment operation of FC

hosts in the steady state

 Journal of the Korea Industrial Information Systems Research Vol.26 No.3, Jun. 2021 :1-7

- 5 -

 = 


  

= 





 


  

= 





  

 (4)

Note that 
  

∞

 = 1. Therefore, we can

derive  by:

 =


  





 








 

    

∞






=
 

  





 





 







 (5)

In fact, the time required for container de-

ployment consists of two factors, i.e., average

request waiting time in a queue and average

request forwarding latency. From Eqs. (4) and

(5), we first derive the average waiting time

with Little's Law by:






    

∞

  (6)

From this equation, we finally derive the

average container deployment time by:






    

∞

   
  

  

 
  

(7)

As discussed already, we consider two sce-

narios in terms of analytical concern.

Actually, two scenarios are extreme cases for

   and  → ∞ , respectively.

First, in case when each FC host is utilized

to deploy requested containers without neigh-

bouring FC hosts, arriving requests are accu-

mulated in infinite queue in each FC host.

From this scenario, we can easily derive

average waiting time with    by:






    

∞

  (8)

In this equation, we can recognize the de-

ployment time varies depending on the re-

quest arrival rate and containers lifetimes.

Second, infinite number of neighbouring FC

hosts are employed for container deployments.

In this case, fully occupied FC host can im-

mediately send newly arrived requests to an

FC host among infinite number of FC hosts.

It implies that every waiting queue is empty

in FC hosts. Keeping the scenario in mind,

we can have the average latency time for re-

quest forwarding with  → ∞ by:

 
  

∞

 
       


 (9)

From Eqs. (7), (8), and (9), we realize that

we can control container deployment time be-

tween two extreme cases by adjusting the

range(=) for request forwarding.

4. Evaluations

Typical FC hosts have limited resources

since they are usually used for IoT devices

including sensors, wearable devices, health

monitoring devices, etc. Meanwhile, the de-

vices may be consistently utilized since mon-

itoring data should be gathered continuously.

For this reason, we adopt parameter values

by    ,   /s, and     s.

However, we do not specify  since it is re-

placed by . Since  ≤   and  is natu-

ral number, we can apply brute force search

for the evaluations.

We first observe how probability  , that

An Optimal Container Deployment Policy in Fog Computing Environments

- 6 -

FC hosts are fully occupied in the steady

state, depending on  shown in Fig. 3. In

this figure, we can observe meaningful differ-

ences when  ≤ ≤  . Therefore, we fo-

cus on the ranges while ignoring underutilized

condition for    in the subsequent

evaluations.

Fig. 4 shows the container deployment

times depending on  for each value of  . In

this figure, we can observe container deploy-

ment time is high for    since FC hosts

stay very busy. Similarly, container deploy-

ment times increase in proportion to  . In

addition, we can find there exist minimum

points by adjusting the values of  . It im-

plies that there is trade-off relationship be-

tween request waiting time and request for-

warding time. For example,  . container de-

ployment time decreases while  increases

from 2 up to 16. After that, it increases for

 ≧  from the minimum container deploy-

ment time. Particularly, we can see the high-

est point for    compared with the de-

ployment times for    and  when

   . However, it is not surprising finding

since the lowest point for    is less than

the lowest points for    and  . It im-

plies that the way how to manage  influen-

ces the container deployment times greatly.

Finally, we find optimal values of K mini-

mizing container deployment times depending

on ρ in a brutal force manner from Eqs.

(7)-(9) as shown in Fig. 5. From this figure,

we can realize that more FC hosts should be

employed for heavier workload and longer re-

quest forwarding latency. Consequently, in or-

der to minimize the container deployment

times, we need to dynamically adjust the

number of employed FC hosts by monitoring

workload of each FC hosts carefully.

Fig. 5 Optimal values of 

Fig. 3 The probability  that FC hosts are

fully occupied in the steady state

Fig. 4 Container deployment times

 Journal of the Korea Industrial Information Systems Research Vol.26 No.3, Jun. 2021 :1-7

- 7 -

5. Conclusion

We find there exist a trade-off relationship

between waiting times in container deploy-

ment queue and container request forwarding

times over multiple FC hosts in an analytical

manner. The analytical results show that we

need to deal with the number of employed FC

hosts carefully for minimum container deploy-

ment times while monitoring system uti-

lizations of FC hosts. In future, we further

study practical container deployment strategy

by implementing monitoring system to derive

precise service arrival model and container

deployment times while the proposed schedul-

ing policy is provided with the dynamic ad-

justment policy discussed in the paper.

References

ETSI. Multi-access Edge Computing (MEC);

Framework and Reference Architecture. GS

MEC 003 version 3.2.0, January 2019.

H. Shah-Mansouri and V. W. S. Wong,

“Hierarchical Fog-Cloud Computing for IoT

Systems: A Computation Offloading Game,”

IEEE Internet of Things Journal, vol. 5, no.

4, pp. 3246–3257, August 2018.

M. Simsek, A. Aijaz, M. Dohler, J. Sachs, and

G. Fettweis, “5G-Enabled Tactile Internet,”

IEEE Journal on Selected A reas in

Communications, vol. 34, no. 3, pp. 460–473,

March 2016.

S. Hoque, M. S. d. Brito, A. Willner, O. Keil,

and T. Magedanz, “Towards Container

Orchestration in Fog Computing Infrastructures,”

in Proc. COMPSAC’17, 2017.

Y. C. Hu, M. Patel, D. Sabella, N. Sprecher,

and V. Young, Mobile Edge Computing A

Key Technology towards 5G. ETSI, September

2015.

진 성 근 (Sunggeun Jin)

∙정회원

∙경북대학교 전자공학 공학사

∙경북대학교 전자공학 공학

석사

∙서울대학교 무선통신 공학박

사

∙한국전자통신연구원 선임연구원

∙(현재) 대구대학교 컴퓨터 소프트웨어전공 부

교수

∙관심분야: 클라우드 컴퓨팅, 5G/6G 무선 네트

워크

전 인 걸 (In-Geol Chun)

∙성균관대학교 정보공학 공학

석사

∙성균관대학교 컴퓨터공학 공

학박사

∙(현재) 한국전자통신연구원 차세

대시스템SW연구실 PL (프로젝트리더, 책임연

구원)

∙(현재) 한국과학기술연합대학원대학교(UST)

컴퓨터소프트웨어학과 부교수

∙(현재) TTA PG609 CPS표준화그룹 의장

∙(현재) 대한임베디드공학회 상임이사

