DOI QR코드

DOI QR Code

Use of Artificial Intelligence-Based Software as Medical Devices for Chest Radiography: A Position Paper from the Korean Society of Thoracic Radiology

  • Eui Jin Hwang (Department of Radiology, Seoul National University Hospital) ;
  • Jin Mo Goo (Department of Radiology, Seoul National University Hospital) ;
  • Soon Ho Yoon (Department of Radiology, Seoul National University Hospital) ;
  • Kyongmin Sarah Beck (Department of Radiology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea) ;
  • Joon Beom Seo (Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine) ;
  • Byoung Wook Choi (Department of Radiology, Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine) ;
  • Myung Jin Chung (Department of Radiology and Medical AI Research Center, Samsung Medical Center, Sungkyunkwan University School of Medicine) ;
  • Chang Min Park (Department of Radiology, Seoul National University Hospital) ;
  • Kwang Nam Jin (Department of Radiology, Seoul Metropolitan Government-Seoul National University Boramae Medical Center) ;
  • Sang Min Lee (Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine)
  • Received : 2021.07.05
  • Accepted : 2021.07.07
  • Published : 2021.11.01

Abstract

Keywords

Acknowledgement

This article is simultaneously published in Journal of the Korean Society of Thoracic Radiology in Korean.

References

  1. Healthcare Bigdata Hub. Statistics on medical practices. Opendata.hira.or.kr Web site. http://opendata.hira.or.kr/op/opc/olapDiagBhvInfo.do. Accessed June 28, 2021
  2. Woo H, Choi MH, Eo H, Jung SE, Do KH, Lee JS, et al. Teleradiology of Korea in 2017: survey and interview of training hospitals and teleradiology center. J Korean Soc Radiol 2019;80:490-502
  3. Choi MH, Eo H, Jung SE, Woo H, Jeong WK, Hwang JY, et al. Teleradiology of Korea in 2017: a questionnaire to members of the Korean Society of Radiology. J Korean Soc Radiol 2019;80:684-703 https://doi.org/10.3348/jksr.2019.80.4.684
  4. Ministry of Food and Drug Safety. Medical device information portal. Udiportal.mfds.go.kr Web site. https://udiportal.mfds.go.kr/search/data/P02_01. Accessed June 28, 2021
  5. Nam JG, Kim M, Park J, Hwang EJ, Lee JH, Hong JH, et al. Development and validation of a deep learning algorithm detecting 10 common abnormalities on chest radiographs. Eur Respir J 2021;57:2003061
  6. Sim Y, Chung MJ, Kotter E, Yune S, Kim M, Do S, et al. Deep convolutional neural network-based software improves radiologist detection of malignant lung nodules on chest radiographs. Radiology 2020;294:199-209 https://doi.org/10.1148/radiol.2019182465
  7. Hwang EJ, Park S, Jin KN, Kim JI, Choi SY, Lee JH, et al. Development and validation of a deep learning-based automated detection algorithm for major thoracic diseases on chest radiographs. JAMA Netw Open 2019;2:e191095
  8. Nam JG, Park S, Hwang EJ, Lee JH, Jin KN, Lim KY, et al. Development and validation of deep learning-based automatic detection algorithm for malignant pulmonary nodules on chest radiographs. Radiology 2019;290:218-228 https://doi.org/10.1148/radiol.2018180237
  9. Park S, Lee SM, Lee KH, Jung KH, Bae W, Choe J, et al. Deep learning-based detection system for multiclass lesions on chest radiographs: comparison with observer readings. Eur Radiol 2020;30:1359-1368 https://doi.org/10.1007/s00330-019-06532-x
  10. Kim DW, Jang HY, Kim KW, Shin Y, Park SH. Design characteristics of studies reporting the performance of artificial intelligence algorithms for diagnostic analysis of medical images: results from recently published papers. Korean J Radiol 2019;20:405-410 https://doi.org/10.3348/kjr.2019.0025
  11. Park SH, Han K. Methodologic guide for evaluating clinical performance and effect of artificial intelligence technology for medical diagnosis and prediction. Radiology 2018;286:800-809 https://doi.org/10.1148/radiol.2017171920
  12. Lee JH, Sun HY, Park S, Kim H, Hwang EJ, Goo JM, et al. Performance of a deep learning algorithm compared with radiologic interpretation for lung cancer detection on chest radiographs in a health screening population. Radiology 2020;297:687-696 https://doi.org/10.1148/radiol.2020201240
  13. Lee JH, Park S, Hwang EJ, Goo JM, Lee WY, Lee S, et al. Deep learning-based automated detection algorithm for active pulmonary tuberculosis on chest radiographs: diagnostic performance in systematic screening of asymptomatic individuals. Eur Radiol 2021;31:1069-1080 https://doi.org/10.1007/s00330-020-07219-4
  14. Khan FA, Majidulla A, Tavaziva G, Nazish A, Abidi SK, Benedetti A, et al. Chest x-ray analysis with deep learningbased software as a triage test for pulmonary tuberculosis: a prospective study of diagnostic accuracy for culture-confirmed disease. Lancet Digit Health 2020;2:e573-e581 https://doi.org/10.1016/S2589-7500(20)30221-1
  15. Qin ZZ, Sander MS, Rai B, Titahong CN, Sudrungrot S, Laah SN, et al. Using artificial intelligence to read chest radiographs for tuberculosis detection: a multi-site evaluation of the diagnostic accuracy of three deep learning systems. Sci Rep 2019;9:15000
  16. Hwang EJ, Kim H, Yoon SH, Goo JM, Park CM. Implementation of a deep learning-based computer-aided detection system for the interpretation of chest radiographs in patients suspected for COVID-19. Korean J Radiol 2020;21:1150-1160 https://doi.org/10.3348/kjr.2020.0536
  17. Murphy K, Smits H, Knoops AJG, Korst MBJM, Samson T, Scholten ET, et al. COVID-19 on chest radiographs: a multireader evaluation of an artificial intelligence system. Radiology 2020;296:E166-E172 https://doi.org/10.1148/radiol.2020201874
  18. Hwang EJ, Park CM. Clinical implementation of deep learning in thoracic radiology: potential applications and challenges. Korean J Radiol 2020;21:511-525 https://doi.org/10.3348/kjr.2019.0821
  19. Sung J, Park S, Lee SM, Bae W, Park B, Jung E, et al. Added value of deep learning-based detection system for multiple major findings on chest radiographs: a randomized crossover study. Radiology 2021;299:450-459 https://doi.org/10.1148/radiol.2021202818
  20. Hwang EJ, Park S, Jin KN, Kim JI, Choi SY, Lee JH, et al. Development and validation of a deep learning-based automatic detection algorithm for active pulmonary tuberculosis on chest radiographs. Clin Infect Dis 2019;69:739-747 https://doi.org/10.1093/cid/ciy967
  21. Hwang EJ, Kim KB, Kim JY, Lim JK, Nam JG, Choi H, et al. COVID-19 pneumonia on chest X-rays: performance of a deep learning-based computer-aided detection system. PLoS One 2021;16:e0252440
  22. Annarumma M, Withey SJ, Bakewell RJ, Pesce E, Goh V, Montana G. Automated triaging of adult chest radiographs with deep artificial neural networks. Radiology 2019;291:196-202 https://doi.org/10.1148/radiol.2018180921
  23. Hwang EJ, Kim H, Lee JH, Goo JM, Park CM. Automated identification of chest radiographs with referable abnormality with deep learning: need for recalibration. Eur Radiol 2020;30:6902-6912 https://doi.org/10.1007/s00330-020-07062-7
  24. Kuo PC, Tsai CC, Lopez DM, Karargyris A, Pollard TJ, Johnson AEW, et al. Recalibration of deep learning models for abnormality detection in smartphone-captured chest radiograph. NPJ Digit Med 2021;4:25
  25. Ministry of Health and Welfare, Health Insurance Review and Assessment Service. Guideline on reimbursement for innovative medical technology. Hira.or.kr Web site. http://www.hira.or.kr/bbsDummy.do?pgmid=HIRAA020002000100&brdScnBltNo=4&brdBltNo=7655. Published December 26, 2019. Accessed June 28, 2021
  26. Tajmir SH, Alkasab TK. Toward augmented radiologists: changes in radiology education in the era of machine learning and artificial intelligence. Acad Radiol 2018;25:747-750 https://doi.org/10.1016/j.acra.2018.03.007
  27. Tang A, Tam R, Cadrin-Chenevert A, Guest W, Chong J, Barfett J, et al. Canadian association of radiologists white paper on artificial intelligence in radiology. Can Assoc Radiol J 2018;69:120-135 https://doi.org/10.1016/j.carj.2018.02.002
  28. Price WN, Gerke S, Cohen IG. Potential liability for physicians using artificial intelligence. JAMA 2019;322:1765-1766 https://doi.org/10.1001/jama.2019.15064
  29. Tobia K, Nielsen A, Stremitzer A. When does physician use of AI increase liability? J Nucl Med 2021;62:17-21 https://doi.org/10.2967/jnumed.120.256032