DOI QR코드

DOI QR Code

Mistakes to Avoid for Accurate and Transparent Reporting of Survival Analysis in Imaging Research

  • Seong Ho Park (Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center) ;
  • Kyunghwa Han (Department of Radiology, Research Institute of Radiological Science, Center for Clinical Imaging Data Science, Yonsei University College of Medicine) ;
  • Seo Young Park (Department of Statistics and Data Science, Korea National Open University)
  • Received : 2021.07.15
  • Accepted : 2021.07.15
  • Published : 2021.10.01

Abstract

Keywords

References

  1. Lee G, Park H, Bak SH, Lee HY. Radiomics in lung cancer from basic to advanced: current status and future directions. Korean J Radiol 2020;21:159-171  https://doi.org/10.3348/kjr.2019.0630
  2. Lee SH, Park H, Ko ES. Radiomics in breast imaging from techniques to clinical applications: a review. Korean J Radiol 2020;21:779-792  https://doi.org/10.3348/kjr.2019.0855
  3. Park HJ, Park B, Lee SS. Radiomics and deep learning: hepatic applications. Korean J Radiol 2020;21:387-401  https://doi.org/10.3348/kjr.2019.0752
  4. Park JE, Kickingereder P, Kim HS. Radiomics and deep learning from research to clinical workflow: neuro-oncologic imaging. Korean J Radiol 2020;21:1126-1137  https://doi.org/10.3348/kjr.2019.0847
  5. Zhu X, Zhou X, Zhang Y, Sun X, Liu H, Zhang Y. Reporting and methodological quality of survival analysis in articles published in Chinese oncology journals. Medicine (Baltimore) 2017;96:e9204 
  6. Chai-Adisaksopha C, Iorio A, Hillis C, Lim W, Crowther M. A systematic review of using and reporting survival analyses in acute lymphoblastic leukemia literature. BMC Hematol 2016;16:17 
  7. Batson S, Greenall G, Hudson P. Review of the reporting of survival analyses within randomised controlled trials and the implications for meta-analysis. PLoS One 2016;11:e0154870 
  8. Abraira V, Muriel A, Emparanza JI, Pijoan JI, Royuela A, Plana MN, et al. Reporting quality of survival analyses in medical journals still needs improvement. A minimal requirements proposal. J Clin Epidemiol 2013;66:1340-1346.e5  https://doi.org/10.1016/j.jclinepi.2013.06.009
  9. Altman DG, De Stavola BL, Love SB, Stepniewska KA. Review of survival analyses published in cancer journals. Br J Cancer 1995;72:511-518  https://doi.org/10.1038/bjc.1995.364
  10. Dey T, Mukherjee A, Chakraborty S. A practical overview and reporting strategies for statistical analysis of survival studies. Chest 2020;158:S39-S48  https://doi.org/10.1016/j.chest.2020.03.015
  11. Tolles J, Lewis RJ. Time-to-event analysis. JAMA 2016;315:1046-1047  https://doi.org/10.1001/jama.2016.1825
  12. Therneau T, Crowson C, Atkinson E. Using time dependent covariates and time dependent coefficients in the cox model. Cran.r-project.org Web site. https://cran.r-project.org/web/packages/survival/vignettes/timedep.pdf. Published April 25, 2021. Accessed July 15, 2021 
  13. Lee H, Nunan D. Immortal time bias. Catalogofbias.org Web site. https://catalogofbias.org/biases/immortal-time-bias/. Accessed July 15, 2021 
  14. Park SY, Park JE, Kim H, Park SH. Review of statistical methods for evaluating the performance of survival or other time-to-event prediction models (from conventional to deep learning approaches). Korean J Radiol 2021;22:1697-1707  https://doi.org/10.3348/kjr.2021.0223
  15. CDC. Lesson 3, Section 2: morbidity frequency measures. CDC. gov Web site. https://www.cdc.gov/csels/dsepd/ss1978/lesson3/section2.html. Accessed July 15, 2021 
  16. FDA. Clinical trial endpoints for the approval of cancer drugs and biologics: guidance for industry. FDA.gov Web site. https://www.fda.gov/media/71195/download. Published December 2018. Accessed July 15, 2021 
  17. Cohen R, Vernerey D, Bellera C, Meurisse A, Henriques J, Paoletti X, et al. Guidelines for time-to-event end-point definitions in adjuvant randomised trials for patients with localised colon cancer: results of the DATECAN initiative. Eur J Cancer 2020;130:63-71  https://doi.org/10.1016/j.ejca.2020.02.009
  18. Bellera CA, Penel N, Ouali M, Bonvalot S, Casali PG, Nielsen OS, et al. Guidelines for time-to-event end point definitions in sarcomas and gastrointestinal stromal tumors (GIST) trials: results of the DATECAN initiative (Definition for the Assessment of Time-to-event Endpoints in CANcer trials). Ann Oncol 2015;26:865-872  https://doi.org/10.1093/annonc/mdu360
  19. Gourgou-Bourgade S, Cameron D, Poortmans P, Asselain B, Azria D, Cardoso F, et al. Guidelines for time-to-event end point definitions in breast cancer trials: results of the DATECAN initiative (Definition for the Assessment of Time-to-event Endpoints in CANcer trials). Ann Oncol 2015;26:2505-2506 
  20. Kramar A, Negrier S, Sylvester R, Joniau S, Mulders P, Powles T, et al. Guidelines for the definition of time-to-event end points in renal cell cancer clinical trials: results of the DATECAN project. Ann Oncol 2015;26:2392-2398  https://doi.org/10.1093/annonc/mdv380
  21. Gourgou-Bourgade S, Cameron D, Poortmans P, Asselain B, Azria D, Cardoso F, et al. Guidelines for time-to-event end point definitions in breast cancer trials: results of the DATECAN initiative (Definition for the Assessment of Time-to-event Endpoints in CANcer trials). Ann Oncol 2015;26:873-879  https://doi.org/10.1093/annonc/mdv106
  22. Bonnetain F, Bonsing B, Conroy T, Dousseau A, Glimelius B, Haustermans K, et al. Guidelines for time-to-event end-point definitions in trials for pancreatic cancer. Results of the DATECAN initiative (Definition for the Assessment of Time-to-event End-points in CANcer trials). Eur J Cancer 2014;50:2983-2993  https://doi.org/10.1016/j.ejca.2014.07.011
  23. Park C, Kim JH, Kim PH, Kim SY, Gwon DI, Chu HH, et al. Imaging predictors of survival in patients with single small hepatocellular carcinoma treated with Transarterial chemoembolization. Korean J Radiol 2021;22:213-224  https://doi.org/10.3348/kjr.2020.0325
  24. Hong EK, Choi SH, Shin DJ, Jo SW, Yoo RE, Kang KM, et al. Comparison of genetic profiles and prognosis of high-grade gliomas using quantitative and qualitative MRI features: a focus on G3 gliomas. Korean J Radiol 2021;22:233-242  https://doi.org/10.3348/kjr.2020.0011
  25. Chung H, Kim BY, Kim HS, Kim HO, Lee JM, Woo JS, et al. Long-term clinical effects of carotid intraplaque neovascularization in patients with coronary artery disease. Korean J Radiol 2020;21:900-907  https://doi.org/10.3348/kjr.2019.0550
  26. Park B, Park J, Lim JK, Shin KM, Lee J, Seo H, et al. Prognostic implication of volumetric quantitative ct analysis in patients with COVID-19: a multicenter study in Daegu, Korea. Korean J Radiol 2020;21:1256-1264  https://doi.org/10.3348/kjr.2020.0567
  27. Kim JW, Kim JH, Byun SS, Kang JM, Shin JH. Paclitaxel-coated balloon versus plain balloon angioplasty for dysfunctional autogenous radiocephalic arteriovenous fistulas: a prospective randomized controlled trial. Korean J Radiol 2020;21:1239-1247  https://doi.org/10.3348/kjr.2020.0067
  28. Seo J, Choi SI, Kim YK. Subclinical coronary atherosclerosis: implication of coronary computed tomography angiography findings among statin candidates according to the 2013 ACC/AHA Cholesterol Management Guidelines. Korean J Radiol 2019;20:1156-1166  https://doi.org/10.3348/kjr.2018.0016
  29. Yoon SH, Kim E, Jeon Y, Yi SY, Bae HJ, Jang IK, et al. Prognostic value of coronary CT angiography for predicting poor cardiac outcome in stroke patients without known cardiac disease or chest pain: the assessment of coronary artery disease in stroke patients study. Korean J Radiol 2020;21:1055-1064  https://doi.org/10.3348/kjr.2020.0103
  30. Lee SJ, Kim JH, Kim SY, Won HJ, Shin YM, Kim PN. Percutaneous radiofrequency ablation for metachronous hepatic metastases after curative resection of pancreatic adenocarcinoma. Korean J Radiol 2020;21:316-324  https://doi.org/10.3348/kjr.2019.0647
  31. Kim S, Kim DY, An C, Han K, Won JY, Kim GM, et al. Evaluation of early response to treatment of hepatocellular carcinoma with yttrium-90 radioembolization using quantitative computed tomography analysis. Korean J Radiol 2019;20:449-458  https://doi.org/10.3348/kjr.2018.0469
  32. Kang Y, Hong EK, Rhim JH, Yoo RE, Kang KM, Yun TJ, et al. Prognostic value of dynamic contrast-enhanced MRI-derived pharmacokinetic variables in glioblastoma patients: analysis of contrast-enhancing lesions and non-enhancing T2 high-signal intensity lesions. Korean J Radiol 2020;21:707-716  https://doi.org/10.3348/kjr.2019.0629
  33. Ahn Y, Koo HJ, Kang JW, Choi WJ, Kim DH, Song JM, et al. Prognostic implication of right ventricle parameters measured on preoperative cardiac MRI in patients with functional tricuspid regurgitation. Korean J Radiol 2021;22:1253-1265  https://doi.org/10.3348/kjr.2020.1084
  34. Kim MY, Park EA, Lee W, Lee SP. Cardiac magnetic resonance feature tracking in aortic stenosis: exploration of strain parameters and prognostic value in asymptomatic patients with preserved ejection fraction. Korean J Radiol 2020;21:268-279  https://doi.org/10.3348/kjr.2019.0441
  35. Ahn Y, Koo HJ, Lee S, Kim DH, Song JM, Kang DH, et al. Preoperative cardiac computed tomography characteristics associated with recurrent aortic regurgitation after aortic valve re-implantation. Korean J Radiol 2020;21:181-191  https://doi.org/10.3348/kjr.2019.0446
  36. Jo SW, Choi SH, Lee EJ, Yoo RE, Kang KM, Yun TJ, et al. Prognostic prediction based on dynamic contrast-enhanced MRI and dynamic susceptibility contrast-enhanced MRI parameters from non-enhancing, T2-high-signal-intensity lesions in patients with glioblastoma. Korean J Radiol 2021;22:1369-1378  https://doi.org/10.3348/kjr.2020.1272
  37. Kim SH, Song BI, Kim HW, Won KS, Son YG, Ryu SW. Prognostic value of restaging F-18 fluorodeoxyglucose positron emission tomography/computed tomography to predict 3-year post-recurrence survival in patients with recurrent gastric cancer after curative resection. Korean J Radiol 2020;21:829-837  https://doi.org/10.3348/kjr.2019.0672
  38. Kim EK, Lee GY, Jang SY, Chang SA, Kim SM, Park SJ, et al. The extent of late gadolinium enhancement can predict adverse cardiac outcomes in patients with non-ischemic cardiomyopathy with reduced left ventricular ejection fraction: a prospective observational study. Korean J Radiol 2021;22:324-333  https://doi.org/10.3348/kjr.2020.0082
  39. Lee J, Jeong WK, Kim JH, Kim JM, Kim TY, Choi GS, et al. Serial observations of muscle and fat mass as prognostic factors for deceased donor liver transplantation. Korean J Radiol 2021;22:189-197  https://doi.org/10.3348/kjr.2019.0750
  40. Shao D, Gao Q, Cheng Y, Du DY, Wang SY, Wang SX. The prognostic value of 18F-fluorodeoxyglucose PET/CT in the initial assessment of primary tracheal malignant tumor: a retrospective study. Korean J Radiol 2021;22:425-434  https://doi.org/10.3348/kjr.2020.0211
  41. Cho YH, Do KH, Chae EJ, Choi SH, Jo KW, Lee SO, et al. Association of chest CT-based quantitative measures of muscle and fat with post-lung transplant survival and morbidity: a single institutional retrospective cohort study in Korean population. Korean J Radiol 2019;20:522-530  https://doi.org/10.3348/kjr.2018.0241
  42. Yeon EK, Cho YD, Yoo DH, Lee SH, Kang HS, Cho WS, et al. De novo intracranial aneurysms detected on imaging follow-up of coiled aneurysms in a Korean population. Korean J Radiol 2019;20:1390-1398  https://doi.org/10.3348/kjr.2018.0914
  43. BMJ. 12. Survival analysis. bmj.com Web site. https://www.bmj.com/about-bmj/resources-readers/publications/statistics-square-one/12-survival-analysis. Accessed July 15, 2021 
  44. Boyd NF, Guo H, Martin LJ, Sun L, Stone J, Fishell E, et al. Mammographic density and the risk and detection of breast cancer. N Engl J Med 2007;356:227-236  https://doi.org/10.1056/NEJMoa062790
  45. Ganna A, Reilly M, de Faire U, Pedersen N, Magnusson P, Ingelsson E. Risk prediction measures for case-cohort and nested case-control designs: an application to cardiovascular disease. Am J Epidemiol 2012;175:715-724  https://doi.org/10.1093/aje/kwr374
  46. Schaubel DE, Zhang H, Kalbfleisch JD, Shu X. Semiparametric methods for survival analysis of case-control data subject to dependent censoring. Can J Stat 2014;42:365-383  https://doi.org/10.1002/cjs.11218
  47. Yoen H, Park HE, Kim SH, Yoon JH, Hur BY, Bae JS, et al. Prognostic value of tumor regression grade on MR in rectal cancer: a large-scale, single-center experience. Korean J Radiol 2020;21:1065-1076  https://doi.org/10.3348/kjr.2019.0797
  48. Klein JP, Moeschberger ML. Survival analysis: techniques for censored and truncated data, 2nd ed. New York: Springer, 2003 
  49. Choi JW, Lee JM, Lee DH, Yoon JH, Kim YJ, Lee JH, et al. Radiofrequency ablation using a separable clustered electrode for the treatment of hepatocellular carcinomas: a randomized controlled trial of a dual-switching monopolar mode versus a single-switching monopolar mode. Korean J Radiol 2021;22:179-188  https://doi.org/10.3348/kjr.2020.0134
  50. Im DJ, Hur J, Han K, Suh YJ, Hong YJ, Lee HJ, et al. Prognostic value of dual-energy CT-based iodine quantification versus conventional CT in acute pulmonary embolism: a propensity-match analysis. Korean J Radiol 2020;21:1095-1103  https://doi.org/10.3348/kjr.2019.0645
  51. Jeong DY, Kang TW, Min JH, Song KD, Lee MW, Rhim H, et al. Effect of perfluorobutane microbubbles on radiofrequency ablation for hepatocellular carcinoma: suppression of steam popping and its clinical implication. Korean J Radiol 2020;21:1077-1086  https://doi.org/10.3348/kjr.2019.0910
  52. Lee B, Choi YJ, Kim SO, Lee YS, Hong JY, Baek JH, et al. Prognostic value of radiologic extranodal extension in human papillomavirus-related oropharyngeal squamous cell carcinoma. Korean J Radiol 2019;20:1266-1274  https://doi.org/10.3348/kjr.2018.0742
  53. Lee DH, Kim SH, Lee SM, Han JK. Prediction of treatment outcome of chemotherapy using perfusion computed tomography in patients with unresectable advanced gastric cancer. Korean J Radiol 2019;20:589-598  https://doi.org/10.3348/kjr.2018.0306
  54. Klein JP, Logan B, Harhoff M, Andersen PK. Analyzing survival curves at a fixed point in time. Stat Med 2007;26:4505-4519  https://doi.org/10.1002/sim.2864
  55. Chen Z, Zhang G. Comparing survival curves based on medians. BMC Med Res Methodol 2016;16:33 
  56. Kwon JH, Gwon DI, Kim JW, Chu HH, Kim JH, Ko GY, et al. Percutaneous biliary metallic stent insertion in patients with malignant duodenobiliary obstruction: outcomes and factors influencing biliary stent patency. Korean J Radiol 2020;21:695-706  https://doi.org/10.3348/kjr.2019.0753
  57. Kim R, Kim CK, Park JJ, Kim JH, Seo SI, Jeon SS, et al. Prognostic significance for long-term outcomes following radical prostatectomy in men with prostate cancer: evaluation with prostate imaging reporting and data system version 2. Korean J Radiol 2019;20:256-264  https://doi.org/10.3348/kjr.2018.0613
  58. Hwang HJ, Lee SM, Seo JB, Kim JE, Choi HY, Kim N, et al. Quantitative vertebral bone density seen on chest CT in chronic obstructive pulmonary disease patients: association with mortality in the Korean obstructive lung disease cohort. Korean J Radiol 2020;21:880-890  https://doi.org/10.3348/kjr.2019.0551
  59. Nieto FJ, Coresh J. Adjusting survival curves for confounders: a review and a new method. Am J Epidemiol 1996;143:1059-1068  https://doi.org/10.1093/oxfordjournals.aje.a008670
  60. Ghali WA, Quan H, Brant R, van Melle G, Norris CM, Faris PD, et al. Comparison of 2 methods for calculating adjusted survival curves from proportional hazards models. JAMA 2001;286:1494-1497  https://doi.org/10.1001/jama.286.12.1494
  61. Liu Z, Jin C, Wu CC, Liang T, Zhao H, Wang Y, et al. Association between initial chest CT or clinical features and clinical course in patients with coronavirus disease 2019 pneumonia. Korean J Radiol 2020;21:736-745  https://doi.org/10.3348/kjr.2020.0171
  62. Won SY, Park HS, Kim EK, Kim SI, Moon HJ, Yoon JH, et al. Survival rates of breast cancer patients aged 40 to 49 years according to detection modality in Korea: screening ultrasound versus mammography. Korean J Radiol 2021;22:159-167  https://doi.org/10.3348/kjr.2019.0588
  63. Wang T, Yang Y, Liu X, Deng J, Wu J, Hou L, et al. Primary invasive mucinous adenocarcinoma of the lung: prognostic value of CT imaging features combined with clinical factors. Korean J Radiol 2021;22:652-662  https://doi.org/10.3348/kjr.2020.0454
  64. Choi WS, Yoon CJ, Lee JH. Percutaneous enteral stent placement using a transhepatic access for palliation of malignant bowel obstruction after surgery. Korean J Radiol 2021;22:742-750  https://doi.org/10.3348/kjr.2020.0723
  65. Zheng Y, Xiao A, Yu X, Zhao Y, Lu Y, Li X, et al. Development and validation of a prognostic nomogram based on clinical and CT features for adverse outcome prediction in patients with COVID-19. Korean J Radiol 2020;21:1007-1017  https://doi.org/10.3348/kjr.2020.0485
  66. Kim NH, Lee SR, Kim YH, Kim HJ. Diagnostic performance and prognostic relevance of FDG positron emission tomography/computed tomography for patients with extrahepatic cholangiocarcinoma. Korean J Radiol 2020;21:1355-1366  https://doi.org/10.3348/kjr.2019.0891
  67. Oh J, Lee JM, Park J, Joo I, Yoon JH, Lee DH, et al. Hepatocellular carcinoma: texture analysis of preoperative computed tomography images can provide markers of tumor grade and disease-free survival. Korean J Radiol 2019;20:569-579 https://doi.org/10.3348/kjr.2018.0501